

FUTURE CIRCULAR COLLIDER

Introduction

- Recovery System (HRS)

- **S1** Isolated cryomodule(s) from the cryoplant due to a malfunctioning value
- **S2** Loss of full sector cooling (e.g., due to power outage)
- S3 Beam vacuum break
- S4 Insulation vacuum break

2 K System Exergetic Optimisation and Helium Recovery System for FCC-ee

B Naydenov, L Delprat, B Bradu and K Brodzinski Cryogenics Group, CERN, 1211 Geneva, Switzerland

Helium Recovery System (HRS) proposal

CM + Distribution LHe inv. @ttbar: 18t in PH, 10t in PL

HRS shall address S1 & S2

- S1: return valve should not block closed mitigation is achieved by a **fail-open valve** and purification systems.
- S2: **UPS powered valves** (in bold) start releasing the He into the return line (D or B) once the CM reaches 1.5 bar. The **cold box is then bypassed** (with CV5x and CV4x), through an atmospheric heat exchanger and a dieselpowered compressor. No additional cold line required.

	Point H	Point L
Mass flow rate	530 g/s	315 g/s
Isothermal compression power	1 MW	600 kW
Autonomy	24 h	13 h
Cooling water needs	~100 m3/h	~60-100 m3/h
Atmospheric heat exchanger	810 kW	500 kW
Cavern volume needs	16 m2 x 8 m	10 m2 x 8 m

2 K system exergetic efficiency optimization

- architectures for a 2 K system **DHEX vs CHEX**.
 - CHEX = preferred option
 - of components)
 - R&D needed)
 - DHEX
 - incompatible with expected mass flow rates.
- was proposed.

- Market volatility exposure reduction
- Constraints:

 - to recover the helium

