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Abstract

¢ In recent years, Deep Learning and Artificial Neural Networks (ANNs) have emerged as powerful tools for modeling complex relationships in data-driven applications, including fluid property
prediction [1]. The present work explores the possibility of utilizing the capabilities of ANN to predict the thermo-physical properties of cryogenic fluids. The module named “CRYOProp” will be
capable of predicting various thermodynamic and transport properties of cryogenic fluids, such as density, viscosity, thermal conductivity, and specific heat, as a function of temperature,
pressure, composition, and other relevant parameters. The present work highlights the lessons learned and limitations during this development.
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**The ANN base model was trained with the simulation data for the thermal conductivity of n-hydrogen
and the predictions were accurate with < 1% error.
**In the temperature range of 15 K to 30 K, experimental data has been used to re-train the base model
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