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❖A need always arises for the cryogenic fluid properties, especially for quantum fluids like helium
and hydrogen, calculations of properties of mixtures such as mixed refrigerant, air, LNG, hydrogen-
deuterium tritium, helium-neon mixtures, and He-3-He-4 mixtures that are either used as
refrigerant or need separation.

❖At present, there are various property routines from where one can get the thermo-physical
properties e.g. RefProp®, Hepak®, GasPack®, CoolProp®, etc.

❖Properties of the quantum fluids like helium and hydrogen are also estimated using the above
property modules. At lower temperatures, there are deviations observed in these modules, when
compared with experimental data e.g. thermal conductivity of n-hydrogen.
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Abstract
❖ In recent years, Deep Learning and Artificial Neural Networks (ANNs) have emerged as powerful tools for modeling complex relationships in data-driven applications, including fluid property

prediction [1]. The present work explores the possibility of utilizing the capabilities of ANN to predict the thermo-physical properties of cryogenic fluids. The module named “CRYOProp” will be
capable of predicting various thermodynamic and transport properties of cryogenic fluids, such as density, viscosity, thermal conductivity, and specific heat, as a function of temperature,
pressure, composition, and other relevant parameters. The present work highlights the lessons learned and limitations during this development.

❖The ANN base model was trained with the simulation data for the thermal conductivity of n-hydrogen
and the predictions were accurate with < 1% error.

❖In the temperature range of 15 K to 30 K, experimental data has been used to re-train the base model
to improve the predictions. Results show minor improvements.

❖The ANN models can be used to predict the thermo-physical properties, however, sources of more
experimental data in the open domain are required to achieve better accuracy of the model.
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❖ In the present work, the thermal conductivity of n-hydrogen has been predicted at a lower
temperature level i.e. 15 K to 30 K using the concept of transfer learning of ANN.

❖The experimental subcooled thermal conductivity data points are taken from Roder [2] and
Charignon [3] to train the ANN model.
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Fig. 2 Thermal conductivity of n-hydrogen wrt RefProp®
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𝐕𝐢𝐧𝐢𝐭 𝐒𝐡𝐮𝐤𝐥𝐚𝟏,𝟐∗, 𝐀𝐚𝐟𝐚𝐪 𝐀𝐥𝐚𝐦𝟐, 𝐍𝐢𝐭𝐢𝐧 𝐒𝐡𝐚𝐡𝟏, 𝐇𝐢𝐭𝐞𝐧𝐬𝐢𝐧𝐡 𝐕𝐚𝐠𝐡𝐞𝐥𝐚𝟑, 𝐏 𝐆𝐡𝐨𝐬𝐡𝟐

❖ In the present work, Excel input data of
thermo-dynamic fluid properties derived
from CoolProp® [4] have been provided
to train the base model and experimental
data of thermal conductivity for n-
Hydrogen has been added to a pre-
trained neural model.

❖To train the base model, density and
temperature have been provided in the
input layer, and thermal conductivity is
predicted at the output layer.

❖As part of the work, a GUI has also been
developed for the ease of users to
estimate the thermo-physical and
transport properties of cryogenic fluid. A
GUI interface has been shown in Fig. 4.

Fig. 3 A schematic of the ANN model

❖Density has been chosen as an
input parameter due to its small
variation (76 to 80 kg/m3) in the
temperature range of 15 K to 50
K, as compared to pressure
variation.

Fig. 1 Experimental points for Thermal conductivity

❖The collected data is
normalized in Python® by
dividing it by its maximum
value. Fig. 5 Flow chart for the base model preparation using ANN

❖To adapt this model for the domain's new range (15 K to 50 K), transfer learning by freezing the
learned weights of the initial layers is employed and only the final layer is updated.

❖The fine-tuning process involved retraining the model with new data from the experiment values,
allowing the ANN to generalize and accurately predict the function’s behavior beyond the initially
trained range.

❖This methodology not only demonstrated the efficacy of transfer learning in function
approximation tasks but also highlighted its potential to reduce computational costs and improve
model performance in extrapolation tasks.

❖ Following the methodology explained above, the parametric analysis of the neural network
has been performed for the number of neurons, layers, learning rates, loss optimizers, and
batches. The outcomes are shown in the form of figures below;
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❖ Impact of no. of layers
After a certain number of
neurons, overfitting of the
data takes place, and
predicted values deviate
from the reference data.
Similarly, number of the
layers in the neural network
has been optimized and 4
layers have been chosen in
the present work.

❖ Learning rates determine how
fast the neural network model
has been learning the input
data.

❖ In the present work, a
learning rate of 0.001 has
been chosen. Different loss
optimizers are also tried as
shown in Figure and in the
present study, the mean
absolute error loss optimizer
has been adopted.

❖ Impact of learning rates ❖ Impact of loss optimizers
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❖ Impact of batch sizes
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Parametric analysis has also been performed for the
different batch sizes, and it was observed that 8 batch size
predicts more accurate values than higher batch sizes as
shown in Figure 11.
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❖ After the parametric analysis, 50 neurons, 4
layers, 0.001 learning rate, batch size of 8, and
mean absolute error as a loss optimizer have
been adopted.

❖ The predicted values show very good agreement
with the reference data with an error < 1 % as
shown in Figure 12.
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❖ Comparison of the Th. Cond. Data with exp. data

❖ There are three methods, which have been tried
to re-train the base model with the new
experimental values.

❖ In method 1, the weights and biases of the base
model are modified with new data points.

❖ In method 2, the weights and biases of the base
model are frozen and then one additional layer is
added for the training of a new model with new
data points.

Fig. 6 Flow chart for the transfer learning process

❖The results, visualized
through a comparative plot
of true and predicted
values, confirmed the
model’s capability to
accurately mimic the
thermodynamic properties
across the extended
domain, validating transfer
learning as a viable strategy
for ANN-based function
approximation.

Fig. 7 Thermal conductivity predictions for 
different number of neurons

Fig. 8 Thermal conductivity predictions for 
different number of layers

Fig. 9 Thermal conductivity predictions for 
different learning rates

Fig. 10 Thermal conductivity predictions for 
different loss optimizers

Fig. 12 Error % of predictions against the Ref. data

Fig. 13 Comparison of the Th. Cond. Data with transfer learning and 
exp. data

Fig. 11 Thermal conductivity predictions for different number 
of batch sizes

❖ In method 3, the weights and biases for all the
layers (except the last one) are frozen and then
new data points are provided to get the weights
and biases for the last layer only.
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Fig. 4 GUI interface for CRYOProp


