

Thu-Po-3.2

Safety at HL-LHC IT String during construction, commissioning, and operation

¹CERN, Technology Department, Geneva, Switzerland

HL-LHC INNER TRIPLET STRING FACILITY

PC:	Power Converter
EES:	Energy Extraction System
CDB:	Circuit Disconnector Boxes
SQXL:	Cryogenic Distribution Line
GMS:	Gas Management System
SC Link:	Superconducting Link
DFHX:	Feedbox connected to the SC Lin

SC Link

In May 2024, the cryogenic and the warm powering systems' installation have been completed and the individual tests successfully and safely executed.

 \bullet

SAFETY COORDINATION DURING **HL-LHC IT STRING LIFE CYCLE**

Six main areas of coordination have been identified to coordinate the safety aspects during the HL-LHC IT String life cycle.

- Areas 1 and 2 are defining the roles and responsibilities in terms of safety and the aspects related to the design phase.
- Areas 3 and 4 address the safety aspects related to the construction phase by considering the SM18 environment.
- Areas 5 and 6 are dedicated to the safety aspects related to the commissioning and operation includes the system and equipment functional and dysfunctional analysis.

DESIGN SAFETY

Table 1. List of SSA, Master SSA and Safety report documents.

Individual avetam ar aquipment pat fully	System/Equipment/complex assembly	Document type
Individual system or equipment not fully conform with EU directives undergoes the so- called System Safety Assessment (SSA). For complex systems Master SSAs are conducted. A safety report identifies and asses the combined electrical and cryogenic hazards related to the failure modes.	 Electrical Failure Modes of the Inner Triplet String Test Assembly in SM18 Test String in SM18 Inner triplet and cold powering Inner Triplet Master Cold Powering Safety of Power Converters (PC) Q1-Q3 MQXFA Q2a-Q2b MQXFB D1 (MBXF) Corrector Package CP D1-DFX Connection Module (DCM) IT Cryogenics for Test String Full remote alignment system (FRAS) 	Safety report Master SSA Master SSA Master SSA Master SSA Master SSA SSA SSA SSA SSA SSA SSA SSA
	- run remote angiment system (rtths)	224

- The complexity of the HL-LHC IT String construction phase requires careful consideration of all safety aspects.
- safety of the personnel, as well as the safety protocols integrated in the applied procedures.
- The cryogenic distribution system has been successfully installed and and safely tested*
- Three successful cooldown tests to 1.9 K.

* Details on A. Onufrena oral presentation, Commissioning of the cryogenic system of the HL-LHC Inner Triplet String test bench, this conference.

SAFETY DURING COMMISSIONING AND OPERATION

• Aims ensuring safest the at

- commissioning and operation phases of the HL-LHC IT String in SM18.
- Three specific safety zones are defined by considering the risks of electrical failures and helium release.
- The **Forbidden** zone is an envelope of at least 50 cm distance from any cold powering.
- The **Controlled** zone is at least 1.5 m distance from any cold powering or warm powering equipment, implemented via an access-controlled and fenced spaces.
- The **Extended** zone is at least 5 m distance from any cold and warm powering equipment not accessible during the commissioning phases above a given quench energy level.

