Optimizing pre-cooling methods for liquid air energy storage power stations: A focus on cooling of tanks

Z. K. Wang^{1,2}, X. Y. Fan^{1,2}, Y. H. Li^{1,2}, J. X. Li^{1,2}, Z. Z. Gao^{1,2}, W. Ji³, L. B. Chen^{1,2,4,*}, J. J. Wang^{1,2,3,*}

1. Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, CAS, Beijing 100190, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

- 3. Zhonglv Zhongke Energy Storage Technology Co., Ltd., 18 Lishi Hutong, Dongcheng District, Beijing, P. R. China
- 4. Institute of Optical Physics and Engineering Technology, Qilu Zhongke, Licheng District, Jinan, P. R. China

Abstract

Liquid Air Energy Storage (LAES), characterized by its large-scale energy storage capacity and geographical flexibility, represents a promising solution to address the intermittency and volatility of renewable energy. In the construction phase of a LAES power station, the pre-cooling procedure for the cold energy storage fluid and its corresponding tank assumes critical significance, as it profoundly impacts both the round-trip efficiency and the overall economic viability of the station. Hence, it is crucial to pre-cool the tanks and pipelines to the appropriate temperatures. In this study, liquid nitrogen spraying is used to pre-cool the storage tank, and the pre-cooling model is established. In addition, this study analyses the effects of the pre-cooling rate, ambient temperature and wind speed on liquid nitrogen consumption.

Model		Item	Unit	Value	Item	Unit	Value
> The cooling capacity required to cool the gas inside the tank:			kg	335853	m_3	kg	7061
$Q_{gas} = C_{p1} \cdot \frac{P \cdot V}{Z \cdot R_g \cdot T} \cdot \frac{dT}{dt}$	Elastic felt Glass wool	m_4	kg	10510	m_5	kg	777196
> The cooling capacity to cool the inner wall of the tank and ceiling: dT		m_6	kg	1041683	m_7	kg	57340
$Q_{inner} = -(C_{p2} \cdot m_2 + C_{p3} \cdot m_3) \cdot \frac{dt}{dt}$ > The cooling capacity to cool the insulation materials:		C_{p2}	$J/(kg \cdot K)$	1.640T-4.670	C_{p3}	$J/(kg \cdot K)$	2.970T+41.000
$Q_{insulate} = -(\alpha_4 \cdot C_{p4} \cdot m_4 + \dots + \alpha_7 \cdot C_{p7} \cdot m_7) \cdot \frac{dT}{dt}$		C_{p4}	$J/(kg \cdot K)$	1.479T-60.093	C_{p5}	$J/(kg \cdot K)$	1.100T+57.926
$\alpha = \frac{T_0 - T_{average}}{T_0 - T_{last}}$	- Expanded perlite	C_{p6}	$J/(kg \cdot K)$	1.479T-60.093	C_{p7}	$J/(kg \cdot K)$	1.479T-60.093
> The cooling capacity to offset heat leakage:	9% Ni steel Aluminum alloy Glass brick	δ_1	m	0.9	δ_2	m	0.4
$Q_{leak} = Q_{bottom} + Q_{wall} + Q_{top}$ > The cooling capacity of the liquid nitrogen input:		δ_3	m	0.6	λ_1	$W/(m \cdot K)$	0.099
$Q_{LN_2} = m_{LN_2} [\gamma + C_{P-LN_2} \cdot (T - T_{last})]$		λ_2	$W/(m \cdot K)$	0.033	λ_3	$W/(m \cdot K)$	0.0424
The temperature of the pre-cooling process: $T = at^3 + bt^2 + ct + d$		R _{int}	m	13	R _{ext}	т	14
$T(0) = T_0$ $T(t_{last}) = T_{last} = 94.95K$	Fig 1. The tank structure diagram.	ε_1		0.7	<i>ε</i> 2		0.6
Results and Conclusion							

Fig 2. The liquid nitrogen consumption under different pre-cooling rate, ambient temperature and wind speed.

■ This study proposes an energy model for the pre-cooling process of tanks and analyses the effects of pre-cooling rate, ambient temperature and wind speed on liquid nitrogen consumption

■ As the pre-cooling rate increases from 2.0 K/s to 4.0 K/s, liquid nitrogen consumption decreases from 678.46 tons to 623.68 tons.

■ As ambient temperature rises from 5°C to 30°C, liquid nitrogen consumption increases from 591.51 tons to 655.13 tons.

□ The influence of wind speed on liquid nitrogen consumption is minimal.

