Enhancing liquid air energy storage efficiency through integration with LNG: comparative analysis of cold energy recovery methods
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Abstract

This study proposes the integration of an external cold source with the LAES system to recover cold energy and enhance the system’s energy efficiency. Liquefied Natural Gas (LNG) serves as an effective external cold source

when coupled with LAES. The coupling of LNG and the LAES is achieved by providing cold energy to the system in two ways: reducing the system’s compression work and supplementing cold energy to assist in liquefaction. This
study conducts a comparative analysis of these two approaches to system improvement, offering valuable insights for the advancement of combined LNG and LAES systems.
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B Basic parameter O This study utilizes LNG’s cold energy for the air compression and

liguefaction processes, achieving a system round-trip efficiency
exceeding 60%.

O With identical air volumes, Case 1 exhibits a superior round-trip
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MLNG This substantial capacity suggests reduced LNG consumption.
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