Development of cryogenic cooling system for low emission future aircrafts

Matteo Tassisto¹, Timin Jacob², Swapnil Kharche¹, Souhaib Boukayoua¹, Ludovic Ybanez¹

¹Airbus UpNext SAS, ²Airbus UpNext GmbH

CRYOPROP (2024/2026)

• From building a MW-class cryogenic powertrain demonstrator to its integration in the regional aircraft

- Develop a Cryogenics & Superconducting supply chain for the key components in the powertrain
 - o Superconductive motor + cryogenic Motor Control Unit
 - o Hi Power Superconductive DC distribution
 - o Propulsion Control System
 - Cryocooling system based on LH2 as primary cold source

Cryocooling System Main objectives

- Operability of the electrical components of a 2 MW powertrain at the target working temperatures
 - o Up to 4 kW at 40 K for superconductive motor
 - $\circ~$ Up to 1 kW at 60 K for DC distribution lines
 - o Up to 20 kW at 120 K for Motor Control Unit
- Optimization of the LH2 consumption for flight phase
 - steady state
 - Transients
 - Failure scenarios
- Optimization of weight, dimensions, space allocation at system and component level
- Increase maturity (TRL) at system and component level
- Assess operability and maintainability at aircraft level

References

Cryogenic cooling system First results

At system level

• Closed recirculation loop of GHe

as secondary coolant @ 15 to 30 bara

Architecture and system trades

 Cooling system mass minimization 220kg to 290 kg considering 14 m cryolines

• Component operating temperature vs H2 consumption

< 32 g/s at nominal power for motor temperature < 50K, DC cables < 60K, MCU <100K

At component level

▼INTERGA

Main learnings so far ...

- Potential of an embeddable cooling system based on LH2 is confirmed
- Figures of Merit in terms of mass , efficiency and LH2 are compatible with AC requirements
- Technology to be matured, no showstoppers identified at system and component level

Future Challenges and next steps...

- Development of mature components with optimized figures of merit (valves, heat exchangers, cryofans, cryolines) taking into account aircraft constraints and qualification requirements.
- Manufacture and test a full representative cryogenic cooling loop Demonstrator in 2026

