

1. ABSTRACT

This article presents a scaling analysis of the cavitation-induced fluid transient within a flui and hot water at a temperature corresponding to the same thermodynamic parameter, using various scaling models. A comprehensive comparative assessment of the cavitation-induced fluid transient behaviour in cryogenic fluid and hot water is conducted to ascertain the similarity approach based on this thermodynamic scaling will be used for a proposed scaled-down experimental setup to study the cryogenic fluid transients at IIT Kharagpur.

- or deceleration in a fluid flow network.
- formation and subsequent collapse of vapour cavities.
- suppression.
- characteristics.

ESULTS		
Parameters	H2O	LN2
Pipe length L (m)	9.29	
Pipe diameter D (m)	0.019	
Reservoir pressure (kPa)	1394	
Valve closure time (s)	0.018	
Velocity u (m/s)	1.375	3.25
Young's Modulus E (GPa)	190	
Pipe roughness E(m)	2 x 10 ⁻⁶	
Temperature (K)	293- 423	87

Thermodynamic scaling analysis of cavitating fluid transients in a cryogenic environment

Cryogenic Engineering Centre, Indian Institute of Technology Kharagpur, West Bengal, 721302, India,

Arjun Garva, Arpit Mishra, Parthasarathi Ghosh

Poster ID: 262 (Thu-Po-3.4)