

EXPERIMENTAL INVESTIGATION AND PERFORMANCE PREDICTION OF CRYOGENIC TEMPERATURE SENSOR FOR CRYOGENIC ROCKET ENGINE USING ARTIFICIAL INTELLIGENCE TECHNIQUES Upendra Behera^{1*}, Debashis Panda¹, Chandrasekharan C², Jeen Britto M², Cross Sapna A² and D.S. Nadig¹

MOTIVATION

- semicryogenic rocket engines.
- temperature measurement.

- temperature for the first time.

tanks to combustion chamber [1].

Regression plots of different backpropagation schemes

BFGS quasi-Newton backpropagation (a) Bayesian regularization backpropagation (c) Conjugate gradient backpropagation with Fletcher-Reeves updates (d) Conjugate gradient backpropagation with Polak-Ribiére updates (e) Gradient descent with momentum and adaptive learning rate backpropagation (g) Levenberg-Marquardt backpropagation (h) One-step secant backpropagation (i) Resilient backpropagation (j), Scaled conjugate gradient backpropagation (k). Details available in reference [4, 5]

¹ Centre for Cryogenic Technology, Indian Institute of Science, Bangalore, India ² ISRO Propulsion Complex, Indian Space Research Organization, Mahendragiri, India

Comparison of ANN results Vs Experimental results

Photographic view of experimental facility

	Resistance of the sensor (Ohm)											
Temperature of		Backpropagation schemes										
Cernox (K)	Experimental	h	b	а	j	k o	C	d	е	i	g	f
5.0002	1.6213	1.6182	1.6196	3.9607	2.538147	1.688845	1.766439	1.226913	1.327035	-1.77764	52.87454	-486.328
7.5003	1.6478	1.6534	1.6522	3.3452	2.536305	1.651384	1.542669	1.481158	1.612913	1.718693	9.622228	-584.474
10.0069	1.7048	1.6970	1.6964	2.7384	2.531951	1.68979	1.493163	1.714416	1.820719	3.403773	-13.3735	-642.018
20.0664	3.4469	3.4488	3.4490	-8.1268	2.322648	4.113537	4.392768	4.806477	4.190243	4.892477	-46.6204	-611.665
30.0586	10.0562	10.0516	10.0473	-9.6502	-1.21524	8.399953	9.268266	8.929822	8.442757	7.613098	-40.9887	-518.808
40.0324	22.5141	22.5152	22.5199	42.5779	28.11533	25.15788	24.47031	23.32824	23.71582	24.23483	104.1062	-348.663
50.0425	39.507	39.4993	39.5039	44.12678	42.13301	37.45446	37.96966	40.00731	38.61288	38.6007	67.49306	-158.505
60.039	59.139	59.1471	59.1432	36.31418	43.89693	58.53241	58.41347	57.80466	58.95191	57.3889	-7.43192	78.5873
70.0131	80.109	80.1126	80.1132	96.69770	93.77252	82.51254	82.67485	83.06659	82.4038	84.4353	108.4219	224.435
80.0266	101.738	101.732	101.733	115.1899	96.25908	100.2234	99.68783	99.56504	99.10524	98.18898	133.1208	392.106
90.0026	123.428	123.423	123.4216	102.9348	122.9382	123.1959	123.2356	123.4231	124.6953	123.5633	113.3866	687.375
100.013	145.152	145.143	145.1461	149.6863	137.1479	146.8687	147.1205	147.156	145.3927	148.8479	125.868	859.949
110.019	166.732	166.732	166.7312	172.0965	175.0475	164.4996	164.5075	164.0825	165.5599	163.7379	148.0222	843.710
120.003	188.074	188.087	188.0869	184.6880	183.6935	189.6067	189.473	190.0268	188.4927	189.3254	206.4416	536.320
150.006	251.45	251.458	251.4575	253.3896	255.1373	253.2255	253.2809	253.5051	253.7618	254.0197	254.4035	11.2000
200.01	354.98	354.998	354.9984	356.9694	356.9965	354.0523	354.3984	354.075	355.0209	354.3288	346.4531	-218.981
250.006	456.6	456.599	456.6011	450.6370	447.6331	454.1486	455.9898	454.2251	455.8668	454.088	455.7446	618.434
300.326	558.67	558.848	558.9746	640.1824	538.0993	566.6629	565.404	557.4475	567.4462	549.4322	487.8436	489.128
	Resistan	ce. sen	sitivity .	and dim	nensionl	ess sensi	tivity of	sensors	from 5	K to 300	Κ	

_				remperature or		6	Dimensionless
Temperature of				Cernox (K)	Resistance (Ohm)	Sensitivity	sensitivity
Cernox (K)	Resistance (Ohm)	Sensitivity	Dimensionless sensitivity	80.0266	101.738	2.115987461	1.664425113
5.0002	1.6213	0.008547009	0.026359558	85.0308	112.607	2.166377816	1.63585602
7.5003	1.6478	0.015267176	0.069491684	90.0026	123.428	2.422997947	1.766828556
10.0069	1.7048	0.03125	0.183432441	95.0295	124 227	2 142957142	1 515940266
15.0145	2.1356	0.165482234	1.163435566	55.0295	134.357	2.14203/143	1.515849200
20.0664	3.4469	0.368522073	2.145380291	100.013	145.152	2.178649237	1.501138435
25.046	5.9881	0.664939551	2.78119537	105.002	155.919	2.19047619	1.475153002
30.0586	10.0562	0.973891925	2.911022832	110.019	166.732	2.075	1.369199824
35.0399	15.6153	1.254293263	2.814567155	120.003	188.074	1.789473684	1.14179637
40.0324	22.5141	1.467817896	2.609932138	125.009	198.742	1.848484848	1.162699593
45.0515	30.587	1.589648799	2.341388918	150.006	251.45	2	1.193127858
50.0425	39.507	1.926701571	2.440503287	175.006	303.39	1.428571429	0.824050138
55.0123	49.025	1.979752531	2.22153473	200.01	354.98	2.22222222	1.25208932
60.039	59.139	2.009512485	2.040094017	225.01	406.12	1.891891892	1.048199041
65.0201	69.508	2.06185567	1.928728518	250.006	456.6	2.5	1.368845817
70.0131	80.109	2.201166181	1.923759726	275.004	506.68	2.727272727	1.480245735
75.0037	90.85	2.04610951	1.689221617	300.326	558.67	0.785498489	0.422262909

 \checkmark An indigenous cryostat have been developed and successfully tested with earlier temperature calibration test rig. Different varieties of resistance sensors have been calibrated from 4.2 K to 300 K and supplied to ISRO for use with launch vehicles.

 \checkmark The sensitivity and dimensionless sensitivity of sensors have been computed numerically from experimental data.

 \checkmark Artificial neural network has been implemented to fit the relation between resistance vs temperature.

relation between resistance and temperature. Scaled conjugate gradient back propagation scheme and Levenberg-Marquardt back propagation schemes are in an excellent agreement with **experimental values** over other selected back propagation schemes.

 \checkmark Different back propagation algorithms are implemented to establish The developed sensors are of excellent sensitivity and accuracy

from cryogenic temperature (4.2 K) to ambient temperature (300 K).

[3] https://www.lakeshore.com/ (2019): 114273 [5] https://in.mathworks.com/

Poster # 399

Resistance of sensor for different back prop schemes

International Cryogenic Materials Conference 202

July 22-26, 2024, Geneva, Switzerland

Mathematical background behind computation of sensitivity & dimensionless sensitivity are explained in references [1,6]

CONCLUSIONS

REFERENCES

[1] Re-entry of Cryogenic Upper Stage of LVM3 M4, Vol. 19, The Aeronutical Society of India, E-news, 2024.

[2] Behera, U., Panda, D., Suma M.N., & Suresh, T. (2024). Development of an Indigenous Cryogenic Temperature Sensors Calibration Facility for Cryogenic and Semicryogenic Rocket Engines. In Proceedings of the International Conference on Advances in Aerospace and Energy Systems (April 04-06, 2024), Liquid Propulsion Systems Centre, Valiamala, ISRO, India.

[4] Kumar, Manoj, Debashis Panda, Suraj K. Behera, and Ranjit K. Sahoo. "Experimental investigation and performance prediction of a cryogenic turboexpander using artificial intelligence techniques." Applied thermal engineering 162

[6] S.S. Courts, and B.R. Courts, "Stability of Cernox[®] temperature sensors stored at room temperature over a 29-year period". Cryogenics, 129, 103616, 2023