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Abstract

The study explores the water hammer's intricate dynamics with cavitation in cryogenic fluids through numerical modeling. It employs the finite volume method to delve into the complexities of this
phenomenon, including the induced thermal effects that emerge during pressure wave propagation, especially in cryogenic fluid transients.

Introduction

Water hammer occurs when fluid flow 1s abruptly stopped or redirected,
the fluid’'s Inertia generates a high-pressure wave that travels back
through the system.

During the water hammer when the negative side of the pressure wave
reaches the vapor pressure, vapor bubbles start forming, and an
Increase In localized pressure during the pressure wave causes these
bubbles to collapse. Due to the collapse, additional pressure is
generated.

Literature review

Joukowsky performs first analysis of the water hammer. From the
fundamental equation the rise in pressure during water hammer Is: AP=
PAAvD

Pressure wave always moves with constant velocity for a single phase
which depends upon the material physical properties, dimensions, and
end conditions. For two-phase it also depends on mass fraction|[1].

In cryogenic fluid due to evaporative cooling during the formation of
vapor bubbles, a significant change Iin vapor pressure Is observed that
reduces the tendency of cavitation, It Is called thermal suppression
effect|[2].

In the literature numerical modeling is performed using MOC, DVCM,
DGCM models|3].

Lacunae

Scarcity of experimental data for cavitation-induced water hammer for
water and cryogenic fluid.
Only 1D models have been developed for cryogenic fluids. Thermal
effect is not included in It.

Objectives

Develop the 2D axis-symmetrical numerical modeling using the finite
volume method for water and cryogenic fluid.
Validate the models using experimental data.
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