ICEC/ICMC A single-stage high frequency 40 K pulse tube cryocooler

29th International Cryogenic Engineering Conference International Cryogenic Materials Conference 2024 July 22-26, 2024, Geneva, Switzerland

To develop a long-wavelength infrared detector, a 40 K pulse tube cryocooler is needed to provide reliable and low-noise cooling power. Traditionally, it is generally believed that to improve efficiency, a 40 K pulse tube cryocooler needs to operate at around 40 Hz. However, low frequency cryocoolers are heavier and are not preferred for use on satellites. In this paper, a lightweight pulse tube cryocooler working at 76 Hz is designed. The inertance tubes, along with the reservoir, serve as the only phase-shifter to guarantee the stability. Currently, the cryocooler has achieved a no-load lowest temperature of 26 K. It has a cooling capacity of 9 W at 40 K while operating at 500 W of electrical power, and it weighs only 7.8 kg. The efficiency was approximately 11.1%. The performance characteristics of the designed cryocooler are presented in detail.

Introduction

- ◆ The Key Laboratory of Space Energy Conversion Technologies of TIPC, CAS has conducted the research on PTCs for over twenty years. Several PTCs working at **4 K to 180 K** have been manufactured.
- In recent years, we have developed several single-stage low-temperature pulse tube cryocooler. In 2021, we designed a 2.1 W/40 K single-stage PTC, the relative Carnot efficiency was up to 8.8%. In 2023, we further optimized this PTC to obtain a minimum **no-load temperature** of **20.3 K**.
- In order to reduce the weight, the high frequency technology is applied to the 40 K PTC. Finally, we have successfully developed a lightweight 40 K PTC.

High frequency technology

• The lightness of a cryocooler can be measured in terms of its specific mass. The specific mass of a PTC can be defined as the ratio of its mass to its cooling capacity. Research indicates that the **specific mass** of PTC is related to its efficiency, operating frequency, and charging pressure. As shown in Equation 1.

$$\beta_{ptc} = \frac{Q_{c_{PTC}}}{M_{PTC}} \propto \eta_{cf} f P_0$$

• The term M_{PTC} is the PTC mass, Q_{CPTC} is the cooling capacity, η_{cf} is the efficiency of the cold finger, f is the frequency, P_0 is the charge pressure.

Schematic of high-frequency technology

Nailiang Wang^{1, 2}, Yuqiang Xun^{1,2*}, Youxian Du¹, Lingjiao Wei^{1,2}, Yanen Li^{1,2}, Miguang Zhao^{1,2}, Houlei Chen^{1,2}, Jingtao Liang^{1,2}

¹Key Laboratory of Space Energy Conversion Technologies, Technical Institute of Physics and Chemistry, CAS, Beijing, 100190, China ²University of Chinese Academy of Sciences, Beijing 100190, China

Abstract

Conclusions and future work

> Conclusions : By adopting high-frequency technology, the operating frequency of the 40 K cryocooler is increased from the conventional 40 Hz to 76 Hz. At present, this cooler prototype has a cooling capacity of 9 W at 40 K while operating at 500 W of electrical power, and it weighs only 7.8 kg. Compared to the conventional 40 K cryocooler, the efficiency is basically the same, but the weight is significantly reduced. > Future work: It is expected that by optimizing the cold finger parameters, the operating frequency can be higher than 100 Hz, and the weight of the cryocooler can be further reduced.

power	Cooling capacity	Relative Carnot efficiency	
00	5.0	10.4%	
00	7.1	11.1%	
00	9.0	11.1%	