
Machine Learning
Tutorial

Prof Ing. Gianluca Valentino

Department of Communications and Computer Engineering

University of Malta

In the next 2 hours..

• ML 101: linear & logistic regression

• Different learning paradigms and tasks

• Neural Networks

• Clustering & Anomaly detection

• Advanced topics: CNNs and RL

Preliminary info before we dive in

• This tutorial only assumes:
1. that you have some programming knowledge (ideally Python).

2. that you have some data modeling experience (e.g. fitting a line to a curve).

• This tutorial will not make you a ML expert.. but at least you will:
1. Grasp the basic concepts to be able to start learning more.

2. Learn the importance of looking under the hood.

3. Understand which problem would require which technique/model.

4. Familiarize yourself with commonly used Python libraries for ML.

Outline

• ML 101: linear & logistic regression

• Different learning paradigms and tasks

• Neural Networks

• Clustering & Anomaly detection

• Advanced topics: CNNs and RL

ML 101: Linear Regression

• Regression analysis: a statistical process for estimating the
relationship between variables

• Any regression model involves the following:

• The independent variables X (known)
• The dependent variable Y (known)
• The vector of parameters θ (unknown)

where Y ≈ f(X, θ)

Linear Regression: example

• Consider apartment prices in Cape Town as a function of size.

• We would like to build a model that predicts price given a certain size.

• This is a case of supervised learning

Linear Regression: example

• Formally, we need to build a dataset (e.g. from estate agents)

• In this particular case, it is known as a labelled dataset.

• Notation:
• m = # training examples
• X = input variables/features
• Y = output/target variables
• (X,Y) = one training example

• We have m training examples. So training set is the matrix:
[(x(1), y(1)), (x(2), y(2)), … (x(i), y(i)), … (x(m), y(m))]

where i refers to the ith

training example

The hypothesis

• In general, we want to discover a model or hypothesis

• So in supervised learning, we:
• start from a training set

• learn a model which has a certain structure and parameters from the training set

• We need to define the model ourselves (e.g. a 2nd order polynomial).

h YX

Back to our house prices example..

1. Select a model (structure + parameters)

• We can do this manually using visualization

• We see a linear relationship between price and area

• So the structure is that of a linear function with one variable:

hθ(x) = θ0 + θ1x

• This is known as linear regression with one variable (or univariate linear
regression)

Back to our house prices example..

2. The next step is to learn the model parameters

• We notice visually that the best fit is obtained when the Euclidean distance between each
point and the line is minimized

• We can define a cost function which minimizes the error between our predicted value hθ(x)
and our actual output y.

Cost Function We want this
term to be small
(“squared error”)

Summary so far..

• Hypothesis: hθ(x) = θ0 + θ1x

• Parameters: θ0, θ1

• Cost function:

• Goal: to find values θ0, θ1 which minimize J(θ0, θ1)

Gradient Descent

• An algorithm for iteratively finding the minimum of a function

• A function is at its minimum when its gradient (found through
differentiation) = 0

1. Start with a random [θ0, θ1]

2. Keep changing [θ0, θ1] in small steps to reduce J(θ) until a minimum
is found

Gradient Descent
• Formally, we write:

REPEAT until convergence {

}

where:
• α = learning rate (step size) – a hyperparameter

• = partial derivative of J(θ)

• All θj are updated simultaneously

Gradient Descent

• Consider hθ(x) = θ1x.

• We know that J(θ1) looks like:

• Update equation is:

Gradient Descent

• Suppose we start at:

• Slope is positive here

• We want to move downwards so that J(θ1) decreases

• We must decrease θ1

• Therefore, the update equation must be:

• θ1 decreases as we want it to

Gradient Descent

• Instead, suppose we start at:

• Slope is negative here

• We want to move downwards so that J(θ1) decreases

• We must increase θ1

• Therefore, the update equation must be:

• θ1 increases as we want it to

Selection of α

• If α is too small, then algorithm is slow

• If α is too large, then the algorithm could
overshoot the minimum and fail to converge

Local vs global minima

• A cost function may have more than one minimum

• In the case of the house price model and all linear models, J(θ) is a
convex function, so there is only one minimum.

Performance evaluation

• We can also observe the convergence of the
model from the cost function vs # iterations

• There are several metrics which can be used
when predicting continuous variables:

• Mean square error:

• Mean absolute error:

• R2:

• We can calculate these metrics on both the
training set (e.g. 80% of total data) and the
unseen testing set (e.g. 20%)

Jupyter notebooks
• Jupyter notebooks are a browser-based interactive development environment.

• There many possible setups, including launching from a terminal in a Python virtual environment
or else using a GUI such as Anaconda (recommended for beginners)

Jupyter notebooks
• https://www.anaconda.com/download

Jupyter notebook

• Linear regression

Linear Regression: summary

• Terminology: hypothesis, weights, hyperparameters, training/testing set,

• Training via an iterative process (gradient descent)

• We have seen the difference between
• parameters/weights (e.g. theta) which are learnt during training

• hyperparameters (e.g. alpha) which need to be set in advance

• We have seen how to evaluate performance

Introduction to Classification

• Consider a simple example:

• “Sorting incoming fish on a conveyor belt according to
species using optical sensors”

24

Machine Learning

25

Learning

Supervised Unsupervised

Regression Classification Classification

Clustering techniques
e.g. K-Means, DBScan,

…

E.g. Logistic Regression,
Neural Nets, SVM

E.g. Linear Regression,
Neural Nets, SVR

Classification

26

Data collection

Feature
extraction

Model fitting
(training)

Model testing

Performance
evaluation

Feature extraction

• We have to think of features which could allow us to discriminate
between salmon and sea bass
• Length

• Weight

• Width

• Number and shape of fins

27

Classification

• Suppose we consider the length of the fish as a
possible feature for discrimination

28

Preliminary results
• We observe that the length on its own is a poor feature

• About 20% misclassification rate

• Suppose we now select the weight as a possible feature

29

An improved classifier

• If we now combine the width and weight features:

30

Overfitting
• Naively, the best decision boundary would be the one below:

31

• However, this means that the model will not perform
well for new data (therefore it does not generalize well)

The classification problem

• Underfitting:
• model not detailed enough

• Bad performance on training and test datasets

• Overfitting:
• Model too detailed and computationally expensive

• Excellent performance on training set, bad performance on test set

32

An even better decision boundary

33

• A 2D polynomial might give the best fit and tradeoff:

Reminder: Linear Regression

• Regression analysis: a statistical process for estimating the
relationship between variables

• Any regression model involves the following:

• The independent variables X (known)
• The dependent variable Y (known)
• The vector of parameters θ (unknown)

where Y ≈ f(X, θ)

34

Linear regression
• Linear regressor does not work for classification:

• This is a single-input binary class problem.

• In classification, we need a separator or a decision
boundary which splits the space into regions.

35

Intuitive derivation of logistic regression model

• Consider a two-input binary class problem.

• Suppose we plot our data:

• Where:
• x1, x2 are the inputs
• O and ∆ are the classes
• X are the new instances

36

Intuitive derivation of logistic regression model

• Thanks to the separator:
• new instances which fall above the line will be classified as ∆

• new instances below the line will be classified as O.

• We need to automatically find a separator such as the one plotted.

37

Intuitive derivation of logistic regression model
• Suppose that we manage to come up with a valid equation for

the separator visually

• The equation of the line is y = mx + c, and suppose that we
measure m = -7/12 and c = +7/2

• So we have X2 = 7/2 – 7/12 X1

• Or 7 X1 + 12 X2 – 42 = 0

38

Intuitive derivation of logistic regression model

• If we choose points on the line, the equality holds.

• E.g. X1 = 3, X2 = 7/4; 7*3 + 12*7/4 – 42 = 0

• Now let X1 = 4, X2 = 3; 28 + 36 – 42 = 22 > 0

• And let X1 = 1, X2 = 5/2; 7 + 30 – 42 = -5 < 0

• So points below the line will give us –ve values, while
points above the line give +ve values.

39

Intuitive derivation of logistic regression model
• So we could write our model as:

• hθ(x) = f(θ0 + θ1X1 + θ2X2)

• We want our output to be either 0 or 1 (i.e. either the input belongs to one class, or else
to the other):

• However this is a non-differentiable, discontinuous function

• We like differentiable functions as it allows us to minimize the cost function using
gradient descent ☺

40

Intuitive derivation of logistic regression model

41

• We would therefore prefer to use another function,
such as the sigmoid or logistic function.

Cost function
• Inspired from the regression cost function:

• Explanation:
• By definition of logistic function, hθ(x) values vary from 0 to 1

• y is either 0 or 1

• So: , if y = 1

, if y = 0

42

Minimizing the cost function

• We use gradient descent as for linear regression

• We note that the partial differentiation of the cost
function for θj is the same as for linear regression (!)

43

Update equation:

Where:

Jupyter notebook

• Logistic regression

44

Outline

• ML 101: linear & logistic regression

• Different learning paradigms and tasks

• Neural Networks

• Clustering & Anomaly detection

• Advanced topics: CNNs and RL

Different learning paradigms

Different learning paradigms

• Reinforcement learning:

Data mining,
pattern discovery

Well-defined problems
with “small” search space

Well-defined problems when search space
is too massive to use in offline training

Outline

• ML 101: linear & logistic regression

• Different learning paradigms and tasks

• Neural Networks

• Clustering & Anomaly detection

• Advanced topics: CNNs and RL

Biological Neural Networks

A neuron

A Simple Artificial Neuron

• A neuron Y receives inputs from
neurons X1, X2 and X3.

• The outputs from these neurons are x1,
x2, x3.

• The net input yin to the neuron Y is the
sum of the weighted signals from the
neurons.

Typical ANN Architecture

• A further layer of neurons may be
connected after neuron Y.

• In this case, the middle layer consisting
of neuron Y is referred to as a ‘hidden’
layer.

• The output of Y = f(yin), where f is called
the activation function.

Different activation functions

Typical ANN Architectures

• More complicated problems may
require a multilayer network.

NN Training using Backpropagation

• Note the inclusion of a bias neuron in
each layer (except the output)

• Analogous to the intercept when
trying to fit e.g. y = ax + b

• Training involves three steps:

• Feedforward
• Backpropagation
• Weights adjustment

Increasing the number of hidden layers

• A single hidden layer may not be
sufficient for some problems.

• We can increase the number of hidden
layers for as much is needed.

Hyperparameters (so far..)

• Number of neurons in each layer

• Number of layers

• Activation function

• Learning rate

Spiral Classification using a NN

• Jupyter notebook

Spiral Classification

• First network:

• Multiple linear layers -> can be rewritten as a single linear layer (i.e. a linear
classifier)

• We need a series of nonlinear layers to “warp the data”

Animation of warping by neural network

Spiral Classification

• Second network:

• One hidden layer

• Layers have logistic activation functions -> non-linear

• Decision boundaries are now non-linear

Outline

• ML 101: linear & logistic regression

• Different learning paradigms and tasks

• Neural Networks

• Clustering & Anomaly detection

• Advanced topics: CNNs and RL

What is unsupervised learning?
• As opposed to supervised learning which we have seen so far.

• Unsupervised: there are no labels / targets in the dataset.

• We are more interested in uncovering information in our data (data mining) rather than predicting
new data.

• E.g. anomaly detection (fraud, equipment failure, medical problems..), market research, identifying
patterns and groups of objects etc

Gianluca Valentino Unsupervised learning techniques 64

Clustering

• Clustering: grouping a set of items together in
such a way that items in one group (a cluster)
are more similar to each other than to those in
other groups.

• There are several types of clustering algorithms:
• Hierarchical clustering (e.g. Linkage clustering)

• Centroid-based clustering (e.g. K-Means)

• Distribution-based clustering (e.g. Expectation-
Maximization)

• Density-based clustering (e.g. DBSCAN)

Gianluca Valentino Unsupervised learning techniques 65

K-Means clustering algorithm
• Suppose we have a dataset x1, x2, x3, ..., xN} consisting of N observations of D dimensional vectors x

(i.e. D features).

• The goal is to partition the dataset into K clusters.

• Therefore, the number of clusters in our dataset needs to be known a priori.

• A cluster is a group of data points whose distances between one another in D-dimensional space are
small compared to points outside the cluster.

• This can be formalized by introducing a D-dimensional mean vector µk, where k = 1,2,3,...K.

• This represents the center of the cluster.

Gianluca Valentino Unsupervised learning techniques 66

K-Means clustering algorithm

Gianluca Valentino Unsupervised learning techniques 67

• The K-means clustering algorithm assigns a vector xi,j to the cluster which
minimizes the distortion measure:

• The mean vector is then updated by computing the mean intensity value of
the considered cluster such that:

where:

Clustering

• Jupyter notebook

Anomaly Detection

• The process of determining which points in a dataset are different
than most of the others.

• Types of anomalies:

• Point anomalies

• Contextual anomalies

• Collective anomalies

Point anomalies

F1

F2

• An individual data point is anomalous
with respect to the surrounding dataAnomaly

Anomaly

Normal

Normal

Contextual anomalies

• An individual data instance is anomalous within a context

• Also referred to as a conditional anomaly

Collective anomalies
• A collection of related data instances is anomalous

• Requires a relationship among data instances
• Sequential data
• Spatial data
• Graph data

• The individual instances within a collective anomaly are not anomalous by
themselves

Anomaly Detection

• In anomaly detection, we want to identify outliers which do not resemble the bulk
of the dataset.

• Note that we may use supervised learning techniques for anomaly detection (e.g.
a dataset which was previously labelled as ”normal” or “abnormal”)
• This would be a 2-class classification problem
• ..but introduces issues due to the expected class imbalance

• There are a variety of techniques (for point based):
• Distance based methods (k nearest neighbours)
• Density based methods (local outlier factor)
• One-class SVMs
• Clustering

• For time-series data:
• LSTM autoencoders

• Transformer models

Anomaly Detection – kNN distance

• Compute an outlier score as distance to kth nearest neighbor

• Score is sensitive to choice of k

Anomaly Detection – kNN distance

Anomaly Detection – kNN distance

Anomaly Detection – kNN distance

Local Outlier Factor
• One of the most popular anomaly detection algorithms (proposed > 20 years ago).

• Local: is able to find local anomalies.

• Basic idea:

1. Find the k-nearest neighbours

2. For each instance, compute the local reachability density (LRD):

Gianluca Valentino Unsupervised learning techniques 78

where: - Nk(A) is the set of k nearest neighbours of A
- reachability-distancek(A, B) is the maximum between (a) the distance of A and B, or (b) the k-distance of B (i.e. the

distance of B to its own kth nearest neighbour.
- |Nk(A)| is the cardinality of the set.

Local Outlier Factor

3. For each instance, compute the ratio of local densities to obtain the local
outlier factor (LOF):

• This is therefore the average local reachability density of the neighbours
divided by the object’s own local reachability density.

• LOF ~ 1 indicates that an object is comparable to its neighbours (not outlier)

Gianluca Valentino Unsupervised learning techniques 79

Local Outlier Factor

• A rule of thumb: the number of neighbours considered is typically chosen:
1. greater than the minimum number of objects a cluster has to contain, so that

other objects can be local outliers relative to this cluster;

2. smaller than the maximum number of close by objects that can potentially be
local outliers.

• This info is generally not available a priori, but taking k = 20 seems to work
well in general.

• The larger the LOF score, the more likely it is that a data point is an outlier.

Gianluca Valentino Unsupervised learning techniques 80

Local Outlier Factor

Anomaly Detection

• Jupyter notebook

Outline

• ML 101: linear & logistic regression

• Different learning paradigms and tasks

• Neural Networks

• Clustering & Anomaly detection

• Advanced topics: CNNs and RL

CNNs: ML vs Deep Learning

Convolutional Neural Network

• Visualizing a CNN:

Edge Detection using the convolution operator

Suppose we have a vertical edge in our image

filter

Image-based diagnostics using CNNs
• Objective: predict beam parameters given input beam distribution, gun phase and solenoid

strength at FAST facility.

• PARMELA simulation data of first 8 m of FAST low energy beamline used.

88
A. Edelen et al., Proc. NAPAC2016.

CNN: used to extract features from virtual cathode image
NN: combines these features together with gun phase and solenoid strength

Training set size: 894
Validation set size: 600

C
o

n
v2

D

R
EL

U

R
EL

U

C
o

n
v2

D

Outputs

What is Reinforcement Learning?
• So far: Supervised Learning

• Data: (X, y)

• Goal: Learn a function to map X -> y

• Examples: classification, regression,
object detection etc

Dog

• So far: Unsupervised Learning
• Data: X (no y)

• Goal: Learn some underlying hidden
structure in the data

• Examples: clustering, dimensionality
reduction, anomaly detection

Abnormal

Normal

What is Reinforcement Learning?

• In Reinforcement Learning, an agent
interacts with an environment to learn
how to perform a particular task well.

• How is it different to the other learning paradigms?
• There is no supervisor, only a reward.

• The agent’s actions affect the subsequent data it receives

• Feedback is delayed, and may be received after several actions

Examples of Reinforcement Learning
Fly a helicopter Ensure a corrected orbit

Manage an investment portfolio

Play Atari games better
than humans

Rewards

• The agent receives feedback from the environment through reward

• A reward Rt is a scalar feedback signal

• It is an indication of how well the agent is doing at step t

• The agent’s job is to maximise cumulative reward

• Examples:
• Winning a game

• Achieving design luminosity in a collider

• Maintaining an inverted pendulum at the top

Sequential decision making

• Goal: select actions to maximise total future reward

• Actions may have long term consequences

• Reward may be delayed

• It may be better to sacrifice immediate reward to gain more long-
term reward

• Examples:
• A financial investment (may take months to mature)

• Blocking opponent moves (might help winning probability many moves from
now)

States

• State: what the agent is observing about the environment

• Examples:
• Pixels in an image (of a game, of a driverless car, etc)

• Data from beam instrumentation in an accelerator

• The position of all pieces in a game of chess

The agent and its environment

Agent

Environment
Reward rt

Next state st+1

State st Action at

How can we formalize this mathematically?

Markov Decision Process (MDP)

A0

S0

R1

S1 S2

R2

A1
• Markov property: current state

completely characterizes state of
the world.

• Defined by: (S, A, R, P, γ)
• S: set of possible states

• A: set of possible actions

• R: reward for a given (state, action)
pair

• P(st|st-1, at): transition probability

• γ: Discount factor (usually close to 1)

Markov Decision Process (MDP)

• At time step t = 0, environment samples initial state s0 ~ P(s0)

• Then, for t = 0 until done:
• Agent selects action at

• Environment samples reward rt ~ R(. | st, at)
• Environment samples next state st+1 ~ P(. | st, at)
• Agent receives reward rt and next state st+1.

• A policy π is a function which specifies what action to take by the agent in
each state.

• Objective: find a policy π* that maximizes cumulative discounted reward

A simple MDP: Grid World

actions = {

1. right

2. left

3. up

4. down

}

Objective: reach one of the terminal states
(green) with the least number of actions

A simple MDP: Grid World

Random Policy Optimal Policy

Definitions: Value function and Q-value function
• Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

• How good is a state?
• The value function at state s is the expected cumulative reward from following the

policy from state s:

• How good is a state-action pair?
• The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

Exploration vs Exploitation

During training, we could e.g.:
30% of the time we choose a random action
70% of the time we choose an action with the most expected value

RL agent types

Source: spinningup.openai.com

Tries to learn a policy
directly instead of
learning the exact value of
every (state, action) pair

Combines Policy Gradients
and Q-learning by training
both an actor (the policy)
and a critic (the Q-function)
-> 2 neural nets

Summary

• In these 2 hours, we started from the basics (linear & logistic regression)
and explored several models and learning paradigms.

• The last few years have seen a high growth in the take-up of ML by the
particle accelerator and experimental physics community
• Deep learning developments
• Increase in scale and complexity of machines
• Availability of “AI-ready” data

• ML will be a key tool to help meet demands for boosting performance,
increasing autonomy and availability/reliability.

Back up slides

Neural Network backpropagation - details

Nomenclature

Training
Algorithm

Reinforcement Learning

• What is Reinforcement Learning?

• RL terminology: states, actions, reward, policy

• Value function and Q-value function

• Q-learning and neural networks

• Grid World and Cart Pole

What is Reinforcement Learning?
• So far: Supervised Learning

• Data: (X, y)

• Goal: Learn a function to map X -> y

• Examples: classification, regression,
object detection etc

Dog

• So far: Unsupervised Learning
• Data: X (no y)

• Goal: Learn some underlying hidden
structure in the data

• Examples: clustering, dimensionality
reduction, anomaly detection

Abnormal

Normal

What is Reinforcement Learning?

• In Reinforcement Learning, an agent
interacts with an environment to learn
how to perform a particular task well.

• How is it different to the other learning paradigms?
• There is no supervisor, only a reward.

• The agent’s actions affect the subsequent data it receives

• Feedback is delayed, and may be received after several actions

Cat Agent

State: Sitting

Action: walk Come here!

Reward

Action: keep sitting

Stay hungry..

Observable

Examples of Reinforcement Learning
Fly a helicopter

Make a robot walk

Manage an investment portfolio

Play Atari games better
than humans

Rewards

• The agent receives feedback from the environment through reward

• A reward Rt is a scalar feedback signal

• It is an indication of how well the agent is doing at step t

• The agent’s job is to maximise cumulative reward

• Examples:
• Winning a game

• Achieving design luminosity in a collider

• Maintaining an inverted pendulum at the top

Sequential decision making

• Goal: select actions to maximise total future reward

• Actions may have long term consequences

• Reward may be delayed

• It may be better to sacrifice immediate reward to gain more long-
term reward

• Examples:
• A financial investment (may take months to mature)

• Blocking opponent moves (might help winning probability many moves from
now)

States

• State: what the agent is observing about the environment

• Examples:
• Pixels in an image (of a game, of a driverless car, etc)

• Data from beam instrumentation in an accelerator

• The position of all pieces in a game of chess

The agent and its environment

Agent

Environment
Reward rt

Next state st+1

State st Action at

How can we formalize this mathematically?

Markov Decision Process (MDP)

A0

S0

R1

S1 S2

R2

A1
• Markov property: current state

completely characterizes state of
the world.

• Defined by: (S, A, R, P, γ)
• S: set of possible states

• A: set of possible actions

• R: reward for a given (state, action)
pair

• P(st|st-1, at): transition probability

• γ: Discount factor (usually close to 1)

Markov Decision Process (MDP)

• At time step t = 0, environment samples initial state s0 ~ P(s0)

• Then, for t = 0 until done:
• Agent selects action at

• Environment samples reward rt ~ R(. | st, at)
• Environment samples next state st+1 ~ P(. | st, at)
• Agent receives reward rt and next state st+1.

• A policy π is a function which specifies what action to take by the agent in
each state.

• Objective: find a policy π* that maximizes cumulative discounted reward

A simple MDP: Grid World

actions = {

1. right

2. left

3. up

4. down

}

Objective: reach one of the terminal states
(green) with the least number of actions

A simple MDP: Grid World

Random Policy Optimal Policy

The optimal policy π*

• Need to find the optimal policy π* that maximizes the sum of rewards.

• To handle randomness (initial state, transition probability etc):
• Maximize the expected sum of rewards

Definitions: Value function and Q-value function
• Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

• How good is a state?
• The value function at state s is the expected cumulative reward from following the

policy from state s:

• How good is a state-action pair?
• The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

Bellman equation
• The optimal Q-value function Q* is the maximum expected cumulative reward

achievable from a given (state, action) pair:

• Q* satisfies the Bellman equation:

• Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are
known, then the optimal strategy is to take the action that maximizes the
expected value of

• Optimal policy π* -> taking the best action in any state as specified by Q*.

Solving for the optimal policy

• Value iteration algorithm: use the Bellman equation as an iterative update:

• Qi will converge to Q* as i -> infinity.

Exploration vs Exploitation

During training, we could e.g.:
30% of the time we choose a random action
70% of the time we choose an action with the most expected value

Grid world example

End
Reward: +1

End
Reward: -1

Start

• Agent starts at bottom left.

• At each step, agent has 4
possible actions (up, down,
left, right).

• Black square: agent cannot
move through it.

• Assume each action is
deterministic.

Grid world example

• First, define the grid world parameters:

Grid world example

• Define the reward:

Grid world example

• Probabilistic result of taking an action:

Grid world example

• Define how the state is updated
when the action is taken by the
agent.

• Need to check that the next state
is not the black box or else
outside the grid.

Grid world example

• Tradeoff between exploration (new info) and exploitation (greedy actions):

Grid world example

• Define stopping condition:

Grid world example • Bring everything together:

Solving for the optimal policy: Q-learning

• Value iteration algorithm: use the Bellman equation as an iterative update:

• Qi will converge to Q* as i -> infinity.

• What is the problem with this?
• Not scalable: must compute Q(s, a) for every state-action pair. If state is e.g. current

game state pixels, computationally infeasible to compute for entire state space!

• Solution: use a function approximator to estimate Q(s,a).
• A neural network!

Solving for the optimal policy: Q-learning

• Q-learning: use a function approximator to estimate the action-value
function:

Q(s, a; Θ) ≈ Q*(s, a)

Where Θ are the neural network weights which need to be learned.

• If the function approximator is a deep neural network -> deep q-learning
(DQN)!

RL agent types

Source: spinningup.openai.com

Tries to learn a policy
directly instead of
learning the exact value of
every (state, action) pair

Combines Policy Gradients
and Q-learning by training
both an actor (the policy)
and a critic (the Q-function)
-> 2 neural nets

Cartpole Problem

• Objective: Balance a pole on top of a movable cart

• State: angle, angular speed, position, horizontal velocity
• Action: horizontal force applied on the cart (or not)
• Reward: +1 at each time step if the pole is upright

(within some limits)

OpenAI Gym

• In order to train an agent to perform a task, we need a
suitable physical environment.

• OpenAI gym provides a number of ready environments
for common problems, e.g. Cart Pole, Atari Games,
Mountain Car

• However, you can also define your own environment
following the OpenAI Gym framework (e.g. physical
model of accelerator operation)

OpenAI Gym – Cart Pole Environment

• Let’s have a look at the Cart Pole environment in cartpole.ipynb

• Main component: step function
• Updates state

• Calculates reward

• Also has rendering functionality

Implementation of a DQN agent
• There are several ready implementations of RL agents

• E.g. Keras RL

• We first define the Q network architecture (in Keras fashion):

Implementation of a DQN agent

• We can use a ready-made policy (BoltzmannQPolicy)
• Builds a probability law on q-values and returns an action selected randomly according to this law.

• We also define the number of actions, the learning rate and the number of steps that
we want to train the agent for, trying to optimize some metric.

• Memory: stores the agent’s experiences
• Number of warmup steps: avoids early overfitting
• Target Model update: how often are weights of target network updated

