Machine Learning Tutorial

Prof Ing. Gianluca Valentino

Department of Communications and Computer Engineering

University of Malta

In the next 2 hours..

- ML 101: linear & logistic regression
- Different learning paradigms and tasks
- Neural Networks
- Clustering & Anomaly detection
- Advanced topics: CNNs and RL

Preliminary info before we dive in

- This tutorial only assumes:
	- 1. that you have some programming knowledge (ideally Python).
	- 2. that you have some data modeling experience (e.g. fitting a line to a curve).
- This tutorial will not make you a ML expert.. but at least you will:
	- 1. Grasp the **basic concepts** to be able to start learning more.
	- 2. Learn the importance of **looking under the hood**.
	- 3. Understand **which problem** would require **which technique/model.**
	- 4. Familiarize yourself with **commonly used Python libraries** for ML.

Outline

- **ML 101: linear & logistic regression**
- Different learning paradigms and tasks
- Neural Networks
- Clustering & Anomaly detection
- Advanced topics: CNNs and RL

ML 101: Linear Regression

- **Regression analysis:** a statistical process for estimating the relationship between variables
- Any regression model involves the following:
	- The independent variables X (known)
	- The dependent variable Y (known)
	- The vector of parameters θ (unknown)

where $Y \approx f(X, \theta)$

Linear Regression: example

• Consider apartment prices in Cape Town as a function of size.

- We would like to build a model that predicts price given a certain size.
- This is a case of *supervised learning*

Linear Regression: example

- Formally, we need to build a *dataset* (e.g. from estate agents)
- In this particular case, it is known as a *labelled* dataset.
- Notation:
	- $m = #$ training examples
	- X = input variables/features
	- Y = output/target variables
	- (X,Y) = one training example
- We have *m* training examples. So training set is the matrix: $[(x^{(1)},y^{(1)}), (x^{(2)},y^{(2)}), ... (x^{(i)},y^{(i)}), ... (x^{(m)},y^{(m)})]$ where i refers to the i

where i refers to the *i*th training example

The hypothesis

- In general, we want to *discover* a model or hypothesis
- So in supervised learning, we:
	- start from a training set
	- learn a model which has a certain structure and parameters from the training set
- We need to define the model ourselves (e.g. a 2^{nd} order polynomial).

$$
\begin{array}{c}\n \mathbf{x} & \longrightarrow & \mathbf{h} \\
\hline\n \mathbf{b} & \longrightarrow & \mathbf{v}\n \end{array}
$$

Back to our house prices example..

- 1. Select a model (structure + parameters)
	- We can do this manually using visualization
	- We see a linear relationship between price and area
	- So the structure is that of a linear function with one variable:

 $h_{\theta}(x) = \theta_0 + \theta_1 x$

• This is known as linear regression with one variable (or *univariate* linear regression)

Back to our house prices example..

- 2. The next step is to <u>learn</u> the model parameters
- We notice visually that the best fit is obtained when the Euclidean distance between each point and the line is *minimized*

• We can define a cost function which minimizes the error between our predicted value $h_{\theta}(x)$ and our actual output y.

Summary so far..

- Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$
- Parameters: θ_0 , θ_1

• Cost function:
$$
J(\theta) = \min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2
$$

• Goal: to find values θ_0 , θ_1 which minimize J(θ_0 , θ_1)

- An algorithm for *iteratively* finding the minimum of a function
- A function is at its minimum when its gradient (found through $differential$ = 0
- 1. Start with a random $[\theta_0, \theta_1]$
- 2. Keep changing $[\theta_0, \theta_1]$ in small steps to reduce J(θ) until a minimum is found

• Formally, we write:

REPEAT until convergence {

$$
\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)
$$

where:

}

• α = learning rate (step size) **– a hyperparameter**

$$
\qquad \qquad \bullet \quad \frac{\partial}{\partial \theta_j} \text{\textendash} \text{\small{partial}{} \text{\small{erivative of J(}}\theta \text{\small{)}} = \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}_j
$$

• All θ_j are updated simultaneously

- Consider $h_{\theta}(x) = \theta_1 x$.
- We know that $J(\theta_1)$ looks like:

• Update equation is:
$$
\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)
$$

• Suppose we start at:

- Slope is positive here
- We want to move *downwards* so that $J(\theta_1)$ decreases
- We must *decrease* θ₁
- Therefore, the update equation must be: $\theta_1 := \theta_1 - \alpha \times (positive \ number)$
- θ_1 decreases as we want it to

• Instead, suppose we start at:

- Slope is negative here
- We want to move *downwards* so that $J(\theta_1)$ decreases
- We must *increase* θ₁
- Therefore, the update equation must be:

 $\theta_1 := \theta_1 - \alpha \times (negative \ number)$

• θ_1 increases as we want it to

Selection of α

$$
\theta_1:=\theta_1\cdot \overbrace{\mathcal{O}\partial_{\theta_1}}^{\partial}J(\theta_1)
$$

 \cdot If α is too small, then algorithm is slow

 \cdot If α is too large, then the algorithm could overshoot the minimum and fail to converge

Local vs global minima

• A cost function may have more than one minimum

• In the case of the house price model **and all linear models**, J(θ) is a *convex* function, so there is only one minimum.

Performance evaluation

- There are several metrics which can be used when predicting **continuous** variables:
	- Mean square error: $\frac{1}{n}\sum_{i=1}^n (Y_i \hat{Y}_i)^2$
	- Mean absolute error: $\frac{1}{n} \sum_{i=1}^{n} |Y_i \hat{Y}_i|$
	- R^2 :
- We can calculate these metrics on both the **training set** (e.g. 80% of total data) and the unseen **testing set** (e.g. 20%)
- We can also observe the convergence of the model from the cost function vs # iterations

Jupyter notebooks

• Jupyter notebooks are a browser-based interactive development environment.

• There many possible setups, including launching from a terminal in a Python virtual environment or else using a GUI such as Anaconda (recommended for beginners)

Jupyter notebooks

• https://www.anaconda.com/download

Jupyter notebook

• Linear regression

Linear Regression: summary

- **Terminology:** hypothesis, weights, hyperparameters, training/testing set,
- **Training** via an iterative process (gradient descent)
- We have seen the difference between
	- parameters/weights (e.g. theta) which are learnt during training
	- hyperparameters (e.g. alpha) which need to be set in advance

• We have seen how to **evaluate performance**

Introduction to Classification

- Consider a simple example:
	- "Sorting incoming fish on a conveyor belt according to species using optical sensors"

Classification

Feature extraction

- We have to think of features which could allow us to *discriminate* between salmon and sea bass
	- Length
	- Weight
	- Width
	- Number and shape of fins

Classification

• Suppose we consider the length of the fish as a possible feature for discrimination

Preliminary results

- We observe that the length on its own is a poor feature
	- About 20% misclassification rate
- Suppose we now select the weight as a possible feature

An improved classifier

• If we now combine the width and weight features:

Overfitting

• Naively, the best decision boundary would be the one below:

• However, this means that the model will not perform well for new data (therefore it does not generalize well)

The classification problem

- Underfitting:
	- model not detailed enough
	- Bad performance on training and test datasets
- Overfitting:
	- Model too detailed and computationally expensive
	- Excellent performance on training set, bad performance on test set

An even better decision boundary

• A 2D polynomial might give the best fit and tradeoff:

Reminder: Linear Regression

- **Regression analysis:** a statistical process for estimating the relationship between variables
- Any regression model involves the following:
	- The independent variables X (known)
	- The dependent variable Y (known)
	- The vector of parameters θ (unknown)

where $Y \approx f(X, \theta)$

Linear regression

• Linear regressor does not work for classification:

- This is a single-input **binary** class problem.
- In classification, we need a separator or a decision boundary which splits the space into regions.

Intuitive derivation of logistic regression model

- Consider a two-input binary class problem.
- Suppose we plot our data:

- Where:
	- x1, x2 are the inputs
	- O and ∆ are the classes
	- X are the new instances
- Thanks to the separator:
	- new instances which fall above the line will be classified as ∆
	- new instances below the line will be classified as O.
- We need to automatically find a separator such as the one plotted.

• Suppose that we manage to come up with a valid equation for the separator visually

- The equation of the line is $y = mx + c$, and suppose that we measure m = $-7/12$ and c = $+7/2$
- So we have $X_2 = 7/2 7/12 X_1$
- Or 7 X_1 + 12 X_2 42 = 0

- If we choose points **on** the line, the equality holds.
- E.g. $X_1 = 3$, $X_2 = 7/4$; $7*3 + 12*7/4 42 = 0$
- Now let $X_1 = 4$, $X_2 = 3$; $28 + 36 42 = 22 > 0$
- And let $X_1 = 1$, $X_2 = 5/2$; $7 + 30 42 = -5 < 0$
- So points below the line will give us –ve values, while points above the line give +ve values.

- So we could write our model as:
	- $h_{\theta}(x) = f(\theta_0 + \theta_1 X_1 + \theta_2 X_2)$
- We want our output to be either 0 or 1 (i.e. either the input belongs to one class, or else to the other):

- However this is a non-differentiable, discontinuous function
- We like differentiable functions as it allows us to minimize the cost function using gradient descent \odot

• We would therefore prefer to use another function, such as the **sigmoid** or **logistic** function.

Cost function

• Inspired from the regression cost function:

$$
J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) log(1 - h_{\theta}(x^{(i)}))
$$

- Explanation:
	- By definition of logistic function, $h_{\theta}(x)$ values vary from 0 to 1
	- y is either 0 or 1

• So:
\n
$$
J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} log(h_{\theta}(x^{(i)})) \text{ , if } y = 1
$$
\n
$$
J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} log(1 - h_{\theta}(x^{(i)})) \text{ , if } y = 0
$$

Minimizing the cost function

- We use gradient descent as for linear regression
- We note that the partial differentiation of the cost function for θ_j is the same as for linear regression (!)

Update equation:
$$
\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)
$$

\nWhere:
$$
\frac{\partial}{\partial \theta_j} = \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}
$$

Jupyter notebook

• Logistic regression

Outline

- ML 101: linear & logistic regression
- **Different learning paradigms and tasks**
- Neural Networks
- Clustering & Anomaly detection
- Advanced topics: CNNs and RL

Different learning paradigms

Different learning paradigms

• Reinforcement learning:

Outline

- ML 101: linear & logistic regression
- Different learning paradigms and tasks
- **Neural Networks**
- Clustering & Anomaly detection
- Advanced topics: CNNs and RL

Biological Neural Networks

A neuron

A Simple Artificial Neuron

- A neuron *Y* receives inputs from neurons X_1 , X_2 and X_3 .
- The outputs from these neurons are x_1 , $x_2, x_3.$
- The net input y_{in} to the neuron *Y* is the **sum of the weighted signals** from the neurons.

$$
y_{in} = w_1 x_1 + w_2 x_2 + w_3 x_3
$$

Typical ANN Architecture

- A further layer of neurons may be connected after neuron *Y*.
- In this case, the middle layer consisting of neuron *Y* is referred to as a 'hidden' layer.
- The output of $Y = f(y_{in})$, where f is called the *activation function*.

Different activation functions

Typical ANN Architectures

• More complicated problems may require a **multilayer network**.

NN Training using Backpropagation

- Note the inclusion of a bias neuron in each layer (except the output)
- Analogous to the intercept when trying to fit e.g. $y = ax + b$

- Training involves three steps:
	- **Feedforward**
	- **Backpropagation**
	- Weights adjustment

Backpropagation neural network with one hidden layer. Figure 6.1

Neural Network - Backpropagation

© machinelearningknowledge.ai

Increasing the number of hidden layers

- A single hidden layer may not be sufficient for some problems.
- We can increase the number of hidden layers for as much is needed.

Figure 6.11 Backpropagation neural network with two hidden layers.

Hyperparameters (so far..)

- Number of neurons in each layer
- Number of layers
- Activation function
- Learning rate

Spiral Classification using a NN

• Jupyter notebook

Spiral Classification

- First network:
	- Multiple linear layers -> can be rewritten as a single linear layer (i.e. a linear classifier)
	- We need a series of nonlinear layers to "warp the data"

Animation of warping by neural network

Spiral Classification

- Second network:
	- One hidden layer
	- Layers have logistic activation functions -> non-linear
	- Decision boundaries are now non-linear

Outline

- ML 101: linear & logistic regression
- Different learning paradigms and tasks
- Neural Networks
- **Clustering & Anomaly detection**
- Advanced topics: CNNs and RL

What is unsupervised learning?

- As opposed to supervised learning which we have seen so far.
- Unsupervised: there are no labels / targets in the dataset.
- We are more interested in uncovering information in our data (*data mining*) rather than predicting new data.
- E.g. anomaly detection (fraud, equipment failure, medical problems..), market research, identifying patterns and groups of objects etc

Clustering

- **Clustering:** grouping a set of items together in such a way that items in one group (a cluster) are more similar to each other than to those in other groups.
- There are several types of clustering algorithms:
	- Hierarchical clustering (e.g. Linkage clustering)
	- Centroid-based clustering (e.g. K-Means)
	- Distribution-based clustering (e.g. Expectation-Maximization)
	- Density-based clustering (e.g. DBSCAN)

K-Means clustering algorithm

- Suppose we have a dataset x₁, x₂, x₃, ..., x_N} consisting of *N* observations of *D* dimensional vectors **x** (i.e. *D* features).
- The goal is to partition the dataset into *K* clusters.
	- Therefore, the number of clusters in our dataset needs to be known a priori.
- A cluster is a group of data points whose distances between one another in *D*-dimensional space are small compared to points outside the cluster.
- This can be formalized by introducing a *D*-dimensional mean vector *µ^k* , where *k = 1,2,3,...K*.
	- This represents the center of the cluster.

K-Means clustering algorithm

- The K-means clustering algorithm assigns a vector $x_{i,j}$ to the cluster which minimizes the distortion measure: $J_k = ||x_{i,j} - \mu_k||^2$
- The mean vector is then updated by computing the mean intensity value of the considered cluster such that:

$$
\mu_k = \frac{\sum_{i} \sum_{j} r_{i,j,k} x_{i,j}}{\sum_{i} \sum_{j} r_{i,j}}
$$

wh

here:
$$
r_{i,j,k} = \begin{cases} 1, & \text{if } k = arg_k min(||x_{i,j} - \mu_k||^2) \\ 0, & \text{otherwise.} \end{cases}
$$

Clustering

• Jupyter notebook

Anomaly Detection

- The process of determining which points in a dataset are *different* than *most of* the others.
- Types of anomalies:
	- Point anomalies
	- Contextual anomalies
	- Collective anomalies

Point anomalies

• An individual data **point** is anomalous with respect to the surrounding data **Anomaly**

Contextual anomalies

- An individual data instance is anomalous within a **context**
- Also referred to as a conditional anomaly

Collective anomalies

- A **collection** of related data instances is anomalous
- Requires a relationship among data instances
	- Sequential data
	- Spatial data
	- Graph data
- The individual instances within a collective anomaly are not anomalous by themselves

Anomaly Detection

- In anomaly detection, we want to identify outliers which do not resemble the bulk of the dataset.
- Note that we may use supervised learning techniques for anomaly detection (e.g. a dataset which was previously labelled as "normal" or "abnormal")
	- This would be a 2-class classification problem
	- ..but introduces issues due to the expected class imbalance
- There are a variety of techniques (for point based):
	- Distance based methods (k nearest neighbours)
	- Density based methods (local outlier factor)
	- One-class SVMs
	- Clustering
- For time-series data:
	- LSTM autoencoders
	- Transformer models

Anomaly Detection – kNN distance

- Compute an outlier score as distance to kth nearest neighbor
- Score is sensitive to choice of k

Figure 10.4. Outlier score based on the distance to fifth nearest neighbor.

Anomaly Detection - kNN distance

Figure 10.5. Outlier score based on the distance to the first nearest neighbor. Nearby outliers have low outlier scores.

Anomaly Detection - kNN distance

Figure 10.6. Outlier score based on distance to the fifth nearest neighbor. A small cluster becomes an outlier.

Anomaly Detection - kNN distance

Figure 10.7. Outlier score based on the distance to the fifth nearest neighbor. Clusters of differing density.

- One of the most popular anomaly detection algorithms (proposed > 20 years ago).
- **Local:** is able to find local anomalies.
- Basic idea:
- 1. Find the k-nearest neighbours
- 2. For each instance, compute the *local reachability density* (LRD):

$$
\mathrm{lrd}(A) := 1/\left(\frac{\sum_{B \in N_k(A)} \mathrm{reachability\text{-}distance}_k(A,B)}{|N_k(A)|}\right)
$$

where: - *N^k (A)* is the set of k nearest neighbours of A

- reachability-distance_k(A, B) is the maximum between (a) the distance of A and B, or (b) the k-distance of B (i.e. the distance of B to its own kth nearest neighbour.
- $\vert N_{k}(A) \vert$ is the cardinality of the set.

3. For each instance, compute the ratio of local densities to obtain the local outlier factor (LOF):

$$
\mathrm{LOF}_k(A) := \frac{\sum_{B \in N_k(A)} \frac{\mathrm{lrd}_{(B)}}{\mathrm{lrd}_{(A)}}}{|N_k(A)|} = \frac{\sum_{B \in N_k(A)} \mathrm{lrd}(B)}{|N_k(A)|} / \mathrm{lrd}(A)
$$

- This is therefore the *average local reachability density of the neighbours* divided by the object's own local reachability density.
- LOF \sim 1 indicates that an object is comparable to its neighbours (not outlier)

- A rule of thumb: the number of neighbours considered is typically chosen:
	- 1. greater than the minimum number of objects a cluster has to contain, so that other objects can be local outliers relative to this cluster;
	- 2. smaller than the maximum number of close by objects that can potentially be local outliers.
- This info is generally not available a priori, but taking k = 20 seems to work well in general.
- The larger the LOF score, the more likely it is that a data point is an outlier.

relative density (LOF) outlier scores

Anomaly Detection

• Jupyter notebook

Outline

- ML 101: linear & logistic regression
- Different learning paradigms and tasks
- Neural Networks
- Clustering & Anomaly detection
- **Advanced topics: CNNs and RL**

CNNs: ML vs Deep Learning

Convolutional Neural Network

• Visualizing a CNN:

Edge Detection using the convolution operator

Suppose we have a vertical edge in our image

 \ast

Detection

ský svilding building ky tr sky uant plant tree person: 0.992 sky_{alcony} tree tree log: 0.994 horse: 0.993 44℃ = nian **auildinbuilding** building tre cat: 0.982 sidewalk erspraidewa erson: 0.979 $dog: 0.99$ bersonroad sidewalk person son road buildine road road road road road **uilding** road road road road ildingoad road bus: 0.996 boat: 0.970 person: 0.983 person : 0.983 person: 0.736 person: 0.9 **Lickety Split**

Segmentation

Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with permission.

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Figures copyright Clement Farabet, 2012. Reproduced with permission.

[Farabet et al., 2012]

Image-based diagnostics using CNNs

- **Objective:** predict beam parameters given input beam distribution, gun phase and solenoid strength at FAST facility.
- PARMELA simulation data of first 8 m of FAST low energy beamline used.

CNN: used to extract features from virtual cathode image NN: combines these features together with gun phase and solenoid strength

Training set size: 894 Validation set size: 600

⁸⁸ *A. Edelen et al., Proc. NAPAC2016.*

Val. **STD**

176.8

 $1.6e-5$

 $1.5e-5$

 $6.2e-2$

5.9 5.9 27.8 27.5

What is Reinforcement Learning?

- So far: **Supervised Learning**
	- **Data:** (X, y)
	- **Goal:** Learn a function to map X -> y
	- **Examples:** classification, regression, object detection etc

- So far: **Unsupervised Learning**
	- **Data**: X (no y)
	- **Goal:** Learn some underlying hidden structure in the data
	- **Examples:** clustering, dimensionality reduction, anomaly detection

What is Reinforcement Learning?

• In Reinforcement Learning, an **agent** interacts with an **environment** to learn how to perform a particular task **well**.

- How is it different to the other learning paradigms?
	- There is no supervisor, only a **reward.**
	- The agent's actions **affect the subsequent data it receives**
	- **Feedback is delayed**, and may be received after several actions

Examples of Reinforcement Learning

Fly a helicopter Ensure a corrected orbit

Play Atari games better than humans

Rewards

- The agent receives feedback from the environment through reward
- A reward *R^t* is a scalar feedback signal
- It is an indication of how well the agent is doing at step *t*
- The agent's job is to **maximise cumulative reward**
- Examples:
	- Winning a game
	- Achieving design luminosity in a collider
	- Maintaining an inverted pendulum at the top

Sequential decision making

- **Goal:** select actions to maximise total future reward
- Actions may have long term consequences
- Reward may be delayed
- It may be better to sacrifice immediate reward to gain more longterm reward
- Examples:
	- A financial investment (may take months to mature)
	- Blocking opponent moves (might help winning probability many moves from now)

States

- **State:** what the agent is observing about the environment
- Examples:
	- Pixels in an image (of a game, of a driverless car, etc)
	- Data from beam instrumentation in an accelerator
	- The position of all pieces in a game of chess

The agent and its environment

How can we formalize this mathematically?

Markov Decision Process (MDP)

- **Markov property:** current state completely characterizes state of the world.
- Defined by: (S, A, R, P, γ)
	- **S:** set of possible states
	- **A:** set of possible actions
	- **R:** reward for a given (state, action) pair
	- **P(s^t |st-1 , a^t):** transition probability
	- **γ:** Discount factor (usually close to 1)

Markov Decision Process (MDP)

- At time step t = 0, environment samples initial state $s_0 \sim P(s_0)$
- Then, for $t = 0$ until done:
	- Agent selects action a_{t}
	- Environment samples reward $r_t \sim R($. | s_t, a_t)
	- Environment samples next state $s_{t+1} \sim P(. \mid s_t, a_t)$
	- Agent receives reward r_t and next state s_{t+1} .
- A policy π is a function which specifies what action to take by the agent in each state.
- **Objective:** find a policy $\boldsymbol{\pi}^*$ that maximizes cumulative discounted reward $\sum \gamma^t r_t$

A simple MDP: Grid World

 $actions = \{$ 1. right \rightarrow 2. left 3. up 4. down J

}

Objective: reach one of the terminal states (green) with the least number of actions

A simple MDP: Grid World

Random Policy **Contract Contract Contract**

Definitions: Value function and Q-value function

- Following a policy produces sample trajectories (or paths) s₀, a₀, r₀, s₁, a₁, r₁, ...
- **How good is a state?**
	- The **value function** at state s is the expected cumulative reward from following the policy from state s: the control of the control of the con-

$$
V^{\pi}(s) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi\right]
$$

- **How good is a state-action pair?**
	- The **Q-value function** at state s **and** action a, is the expected cumulative reward from taking action a in state s and then following the policy:

$$
Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi \right]
$$

Exploration vs Exploitation

Exploration: Increase knowledge for long-term gain, possibly at the expense of short-term gain

Exploitation: Leverage current knowledge to maximize short-term gain

During training, we could e.g.:

30% of the time we choose a random action

70% of the time we choose an action with the most expected value

Summary

- In these 2 hours, we started from the basics (linear & logistic regression) and explored several models and learning paradigms.
- The last few years have seen a high growth in the take-up of ML by the particle accelerator and experimental physics community
	- Deep learning developments
	- Increase in scale and complexity of machines
	- Availability of "AI-ready" data
- ML will be a key tool to help meet demands for boosting performance, increasing autonomy and availability/reliability.

Back up slides

Neural Network backpropagation - details

Nomenclature

 $\mathbf{x} = (x_1, \ldots, x_i, \ldots, x_n).$

t Output target vector:

 $t = (t_1, \ldots, t_k, \ldots, t_m).$

Portion of error correction weight adjustment for w_{jk} that is due to an δ_k error at output unit Y_k ; also, the information about the error at unit Y_k that is propagated back to the hidden units that feed into unit Y_k .

Portion of error correction weight adjustment for v_{ij} that is due to the δ_{J} backpropagation of error information from the output layer to the hidden unit Z_i .

Learning rate. α

 X_i Input unit i :

For an input unit, the input signal and output signal are the same, namely, x_i .

Bias on hidden unit j. v_{0j}

Hidden unit j : Z_i

The net input to Z_j is denoted z_{min} :

$$
z_in_j = v_{0j} + \sum_i x_i v_{ij}
$$

The output signal (activation) of Z_j is denoted z_j :

 $z_i = f(z_in_i)$.

Bias on output unit k . w_{0k}

 Y_k Output unit k :

The net input to Y_k is denoted y_in_k :

$$
y_{in k} = w_{0k} + \sum_j z_j w_{jk}
$$

The output signal (activation) of Y_k is denoted y_k :

 $y_k = f(y_in_k)$.

Training Algorithm

Step 0. Initialize weights.

(Set to small random values).

Step 1. While stopping condition is false, do Steps 2-9.

- For each training pair, do Steps 3-8. Step 2. Feedforward:
	- $Step 3.$ Each input unit $(X_i, i = 1, \ldots, n)$ receives input signal x_i and broadcasts this signal to all units in the layer above (the hidden units).

Each hidden unit $(Z_j, j = 1, \ldots, p)$ sums its Step 4. weighted input signals,

$$
z_{i} \dot{m}_{j} = v_{0j} + \sum_{i=1}^{n} x_{i} v_{ij},
$$

applies its activation function to compute its output signal,

 $z_j = f(z_in_j)$

and sends this signal to all units in the layer above (output units).

Each output unit $(Y_k, k = 1, \ldots, m)$ sums Step 5. its weighted input signals,

$$
y_in_k = w_{0k} + \sum_{j=1}^p z_j w_{jk}
$$

and applies its activation function to compute its output signal,

$$
y_k = f(y_in_k).
$$

Backpropagation of error:

Each output unit $(Y_k, k = 1, \ldots, m)$ receives Step 6. a target pattern corresponding to the input training pattern, computes its error information term,

 $\delta_k = (t_k - y_k)f'(y \cdot \dot{m}_k),$

calculates its weight correction term (used to update w_{jk} later),

 $\Delta w_{jk} = \alpha \delta_k z_j$

calculates its bias correction term (used to update w_{0k} later),

$$
\Delta w_{0k} = \alpha \delta_k,
$$

and sends δ_k to units in the layer below.
Each hidden unit $(Z_j, j = 1, \ldots, p)$ sums its Step 7. delta inputs (from units in the layer above),

$$
\delta\!\!\!\perp\!\!\!\perp\!\!in_j=\sum_{k=1}^m\delta_k w_{jk},
$$

multiplies by the derivative of its activation function to calculate its error information term,

$$
\delta_j=\delta\!\!\!\perp\!\!\!\perp\!\!in_j f'(\mathsf{L}.\mathsf{in}_j),
$$

calculates its weight correction term (used to update v_{ij} later),

$$
\Delta v_{ij} = \alpha \delta_j x_i,
$$

and calculates its bias correction term (used to update v_{0j} later),

$$
\Delta v_{0j} = \alpha \delta_j
$$

Update weights and biases: Each output unit $(Y_k, k = 1, \ldots, m)$ updates Step 8. its bias and weights $(j = 0, \ldots, p)$: w_{jk} (new) = w_{jk} (old) + Δw_{jk} . Each hidden unit $(Z_j, j = 1, \ldots, p)$ updates its bias and weights $(i = 0, \ldots, n)$: v_{ij} (new) = v_{ij} (old) + Δv_{ij} . 89

Test stopping condition. Step 9.

Reinforcement Learning

- What is Reinforcement Learning?
- RL terminology: states, actions, reward, policy
- Value function and Q-value function
- Q-learning and neural networks
- Grid World and Cart Pole

What is Reinforcement Learning?

- So far: **Supervised Learning**
	- **Data:** (X, y)
	- **Goal:** Learn a function to map X -> y
	- **Examples:** classification, regression, object detection etc

- So far: **Unsupervised Learning**
	- **Data**: X (no y)
	- **Goal:** Learn some underlying hidden structure in the data
	- **Examples:** clustering, dimensionality reduction, anomaly detection

What is Reinforcement Learning?

• In Reinforcement Learning, an **agent** interacts with an **environment** to learn how to perform a particular task **well**.

- How is it different to the other learning paradigms?
	- There is no supervisor, only a **reward.**
	- The agent's actions **affect the subsequent data it receives**
	- **Feedback is delayed**, and may be received after several actions

Examples of Reinforcement Learning

Fly a helicopter

Make a robot walk

Manage an investment portfolio

Play Atari games better than humans

Rewards

- The agent receives feedback from the environment through reward
- A reward *R^t* is a scalar feedback signal
- It is an indication of how well the agent is doing at step *t*
- The agent's job is to **maximise cumulative reward**
- Examples:
	- Winning a game
	- Achieving design luminosity in a collider
	- Maintaining an inverted pendulum at the top

Sequential decision making

- **Goal:** select actions to maximise total future reward
- Actions may have long term consequences
- Reward may be delayed
- It may be better to sacrifice immediate reward to gain more longterm reward
- Examples:
	- A financial investment (may take months to mature)
	- Blocking opponent moves (might help winning probability many moves from now)

States

- **State:** what the agent is observing about the environment
- Examples:
	- Pixels in an image (of a game, of a driverless car, etc)
	- Data from beam instrumentation in an accelerator
	- The position of all pieces in a game of chess

The agent and its environment

How can we formalize this mathematically?

Markov Decision Process (MDP)

- **Markov property:** current state completely characterizes state of the world.
- Defined by: (S, A, R, P, γ)
	- **S:** set of possible states
	- **A:** set of possible actions
	- **R:** reward for a given (state, action) pair
	- **P(s^t |st-1 , a^t):** transition probability
	- **γ:** Discount factor (usually close to 1)

Markov Decision Process (MDP)

- At time step t = 0, environment samples initial state $s_0 \sim P(s_0)$
- Then, for $t = 0$ until done:
	- Agent selects action a_{t}
	- Environment samples reward $r_t \sim R($. | s_t, a_t)
	- Environment samples next state $s_{t+1} \sim P(. \mid s_t, a_t)$
	- Agent receives reward r_t and next state s_{t+1} .
- A policy π is a function which specifies what action to take by the agent in each state.
- **Objective:** find a policy $\boldsymbol{\pi}^*$ that maximizes cumulative discounted reward $\sum \gamma^t r_t$

A simple MDP: Grid World

 $actions = \{$ 1. right \rightarrow 2. left 3. up 4. down J

}

Objective: reach one of the terminal states (green) with the least number of actions

A simple MDP: Grid World

Random Policy **Contract Contract Contract**

The optimal policy π^*

- Need to find the optimal policy π^* that maximizes the sum of rewards.
- To handle randomness (initial state, transition probability etc):
	- Maximize the **expected sum of rewards**

$$
\pi^* = \arg \max_{\pi} \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | \pi\right] \text{ with } s_0 \sim p(s_0), a_t \sim \pi(\cdot | s_t), s_{t+1} \sim p(\cdot | s_t, a_t)
$$

Definitions: Value function and Q-value function

- Following a policy produces sample trajectories (or paths) s₀, a₀, r₀, s₁, a₁, r₁, ...
- **How good is a state?**
	- The **value function** at state s is the expected cumulative reward from following the policy from state s: the control of the control of the con-

$$
V^{\pi}(s) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi\right]
$$

- **How good is a state-action pair?**
	- The **Q-value function** at state s **and** action a, is the expected cumulative reward from taking action a in state s and then following the policy:

$$
Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi \right]
$$

Bellman equation

• The optimal Q-value function Q* is the maximum expected cumulative reward achievable from a given (state, action) pair:

$$
Q^*(s,a) = \max_{\pi} \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi \right]
$$

• Q* satisfies the **Bellman equation:**

$$
Q^*(s, a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s', a') | s, a \right]
$$

• Intuition: if the optimal state-action values for the next time-step $Q^*(s',a')$ are known, then the optimal strategy is to take the action that maximizes the expected value of

$$
r + \gamma Q^*(s',a')
$$

• Optimal policy $\pi^* \rightarrow$ taking the best action in any state as specified by Q^* .

Solving for the optimal policy

• **Value iteration algorithm:** use the Bellman equation as an iterative update:

$$
Q_{i+1}(s,a) = \mathbb{E}\left[r + \gamma \max_{a'} Q_i(s',a') | s, a\right]
$$

• Q_i will converge to Q^* as i -> infinity.

Exploration vs Exploitation

Exploration: Increase knowledge for long-term gain, possibly at the expense of short-term gain

Exploitation: Leverage current knowledge to maximize short-term gain

During training, we could e.g.:

30% of the time we choose a random action

70% of the time we choose an action with the most expected value

- Agent starts at bottom left.
- At each step, agent has 4 possible actions (up, down, left, right).
- Black square: agent cannot move through it.
- Assume each action is deterministic.

• First, define the grid world parameters:

```
import numpy as np
BOARD ROWS = 3BOARD COLS = 4WIN STATE = (0, 3)LOSE STATE = (1, 3)START = (2, 0)#DETERMINISTIC = False
DETERMINISTIC = True
```
• Define the reward:

```
def giveReward(self):
    if self.state == WIN_STATE:
        return 1
    elif self.state == LOSE STATE:
        return -1else:
        return 0
```
• Probabilistic result of taking an action:

```
def chooseActionProb(self, action):
    if action == "up":
       return np.random.choice(["up", "left", "right"], p=[0.8, 0.1, 0.1])
    if action == "down":return np.random.choice(["down", "left", "right"], p=[0.8, 0.1, 0.1]if action == "left":
       return np.random.choice(['left', "up", "down"], p=[0.8, 0.1, 0.1])if action == "right":
       return np.random.choice(['right", "up", "down"], p=[0.8, 0.1, 0.1])
```
- Define how the state is updated when the action is taken by the agent.
- Need to check that the next state is not the black box or else outside the grid.

```
def nxtPosition(self, action):
    action: up, down, left, right
       1 | 2 | 3|\mathbf{0}\mathbf{1}\overline{2}return next position on board
    if self.determine:
        if action == "up":nxtState = (self.state[0] - 1, self.state[1])elif action == "down":nxtState = (self.state[0] + 1, self.state[1])elif action == "left":nxtState = (self.state[0], self.state[1] - 1)else:
            nxtState = (self.state[0], self.state[1] + 1)self.determine = Falseelse:
        # non-deterministic
        action = self. chooseActionProb(action)self.determine = TruenxtState = self.nxtPosition(action)#self.showBoard()
    # if next state is legal
    if (nxtState[0] >= 0) and (nxtState[0] <= 2):
        if (nxtState[1] >= 0) and (nxtState[1] <= 3):
            if nxtState != (1, 1):
                return nxtState
    return self.state
```
• Tradeoff between exploration (new info) and exploitation (greedy actions):

```
def chooseAction(self):
    # choose action with most expected value
    mx nxt reward = 0
    \overline{\text{action}} = "if np.random.uniform(0, 1) \leq self.exp rate:
        action = np.random-choice(self. actions)else:
        # greedy action
        for a in self.actions:
            current position = self.State.state
            nxt reward = self.Q values [current position] [a]
            if nxt reward >= mx nxt reward:
                action = amx nxt reward = nxt reward
        # print("current pos: {}, greedy aciton: {}".format(self.State.state, action))
    if action == "":action = np.random-choice(self. actions)return action
```
• Define stopping condition:

```
def isEndFunc(self):
   if (self.state == WIN_STATE) or (self.state == LOSE_STATE):
        self.isEnd = True
```
Grid world example • Bring everything together:

```
def play(self, rounds=10):
    i = 0while i < rounds:
        # to the end of game back propagate reward
        if self. State. isEnd:
            # back propagate
            reward = self.State. giveReward()for a in self.actions:
                self. Q values [self. State. state][a] = rewardprint ("Game End Reward", reward)
            for s in reversed(self.states):
                current q value = self.Q values[s[0]][s[1]]
                reward = current q value + self.lr * (self.decay gamma * reward - current q value)
                self. Q values[s[0]][s[1]] = round(reward, 3)self. reset()i \neq 1else:
            action = self.chooseAction()# append trace
            self.states.append([(self.State.state), action])
            print("current position {} action {}".format(self.State.state, action))
            # by taking the action, it reaches the next state
            self. State = self. takeAction(action)# mark is end
            self.State.isEndFunc()
            print("nxt state", self.State.state)
            print("----------------------")
            self.isEnd = self.State.isEnd
```
Solving for the optimal policy: Q-learning

• **Value iteration algorithm:** use the Bellman equation as an iterative update:

$$
Q_{i+1}(s,a) = \mathbb{E}\left[r + \gamma \max_{a'} Q_i(s',a') | s, a\right]
$$

- Q_i will converge to Q^* as i -> infinity.
- What is the problem with this?
	- Not scalable: must compute Q(s, a) for every state-action pair. If state is e.g. current game state pixels, computationally infeasible to compute for entire state space!
- Solution: use a function approximator to estimate Q(s,a).
	- A **neural network!**

Solving for the optimal policy: Q-learning

• Q-learning: use a function approximator to estimate the action-value function:

 $Q(s, a; \Theta) \approx Q^*(s, a)$

Where Θ are the neural network weights which need to be learned.

• If the function approximator is a deep neural network -> **deep q-learning (DQN)!**

Cartpole Problem

- **Objective:** Balance a pole on top of a movable cart
- **State:** angle, angular speed, position, horizontal velocity
- **Action:** horizontal force applied on the cart (or not)
- **Reward:** +1 at each time step if the pole is upright (within some limits)

OpenAI Gym

- In order to train an agent to perform a task, we need a suitable physical environment.
- OpenAI gym provides a number of ready environments for common problems, e.g. Cart Pole, Atari Games, Mountain Car

• However, you can also define your own environment following the OpenAI Gym framework (e.g. physical model of accelerator operation)

OpenAI Gym – Cart Pole Environment

- Let's have a look at the Cart Pole environment in cartpole.ipynb
- Main component: **step function**
	- Updates state
	- Calculates reward
- Also has rendering functionality

Implementation of a DQN agent

- There are several ready implementations of RL agents
	- E.g. Keras RL
- We first define the Q network architecture (in Keras fashion):

```
model = Sequential()model.add(Flatten(input shape=(1, ) + env.observation space.shape))model.add(Dense(16))model.add(Activation('relu'))
model.add(Dense(16))model.add(Activation('relu'))
model.add(Dense(16))model.add(Activation('relu'))
model.add(Dense(nb actions))
model.add(Activation('linear'))
print(model.summary()
```
Implementation of a DQN agent

- We can use a ready-made policy (BoltzmannQPolicy)
	- Builds a probability law on q-values and returns an action selected randomly according to this law.
- We also define the number of actions, the learning rate and the number of steps that we want to train the agent for, trying to optimize some metric.
- Memory: stores the agent's experiences
- Number of warmup steps: avoids early overfitting
- Target Model update: how often are weights of target network updated

```
memory = SequentialMemory (limit=50000, window length=1)policy = BoltzmannQPolicy()dqn = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=10,
               target model update=1e-2, policy=policy)
dqn.compile(Adam(Ir=1e-3), metrics=[ 'mae' ] )history = dqn.fit(env, nb_steps=100, visualize=True, verbose=2)
```