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In the next 2 hours..

* ML 101: linear & logistic regression

* Different learning paradigms and tasks
* Neural Networks

* Clustering & Anomaly detection

* Advanced topics: CNNs and RL



Preliminary info before we dive in

* This tutorial only assumes:

1.
2.

that you have some programming knowledge (ideally Python).
that you have some data modeling experience (e.g. fitting a line to a curve).

* This tutorial will not make you a ML expert.. but at least you will:

1.

2.
3.
4

Grasp the basic concepts to be able to start learning more.

Learn the importance of looking under the hood.

Understand which problem would require which technique/model.
Familiarize yourself with commonly used Python libraries for ML.



Outline

* ML 101: linear & logistic regression

* Different learning paradigms and tasks
* Neural Networks

* Clustering & Anomaly detection

* Advanced topics: CNNs and RL



ML 101: Linear Regression

* Regression analysis: a statistical process for estimating the
relationship between variables

* Any regression model involves the following:

* The independent variables X (known)
* The dependent variable Y (known)
* The vector of parameters 6 (unknown)

where Y = f(X, 0)



Linear Regression: example

* Consider apartment prices in Cape Town as a function of size.
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* We would like to build a model that predicts price given a certain size.

* This is a case of supervised learning



Linear Regression: example

* Formally, we need to build a dataset (e.g. from estate agents)
* |n this particular case, it is known as a labelled dataset.

* Notation:
* m = # training examples
e X =input variables/features
* Y = output/target variables
* (X,Y) = one training example

* We have m training examples. So training set is the matrix:
[(x{2), ytt)), (x3), y@), .. (xW), y@), ... (x{m), y(m)]

where i refers to the ith
training example



The hypothesis

* In general, we want to discover a model or hypothesis

* So in supervised learning, we:
e start from a training set
* learn a model which has a certain structure and parameters from the training set

* We need to define the model ourselves (e.g. a 2"? order polynomial).

X =—> h — Y




Back to our house prices example..

1. Select a model (structure + parameters)

* We can do this manually using visualization
* We see a linear relationship between price and area
* So the structure is that of a linear function with one variable:

hg(x) = 6, + 8,x

* This is known as linear regression with one variable (or univariate linear
regression)



Back to our house prices example..

2. The next step is to learn the model parameters

* We notice visually that the best fit is obtained when the Euclidean distance between each
point and the line is minimized
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(“squared error”)

* We can define a cost function which minimizes the error between our predicted value hy(x)
and our actual output y.



Summary so far..

* Hypothesis: hg(x) = 6, + 8,x

* Parameters: 6,, 6,

i

e Cost function: J(#) = min — N {(hal{z'1) — 112
s i Em.;“ AN

* Goal: to find values 6,, 6, which minimize J(6,, 6,)



Gradient Descent

* An algorithm for iteratively finding the minimum of a function

* A function is at its minimum when its gradient (found through
differentiation) =0

1. Start with a random [0, ©,]

2. Keep changing [8,, 8,] in small steps to reduce J(8) until a minimum
is found



Gradient Descent

* Formally, we write:

REPEAT until convergence {
9. .

B =8 —a—J(H. 0]
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where:

o =learning rate (step size) — a hyperparameter
T

s, 1 , , .
e ——=partial derivative of J(8) — _E Ly ()08
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* AlI6, are updated simultaneously



Gradient Descent

* Consider hg(x) = 0,x.

* We know that J(8,) looks like: T(ey)|

* Update equationis: #; := 6, — u'i.f(ﬁ'l)
064



Gradient Descent

* Suppose we start at:

* Slope is positive here

(o),

We want to move downwards so that J(8,) decreases

We must decrease 6,

Therefore, the update equation must be:

-— S 0, = 0y — a X (positive number)

* 0, decreases as we want it to



Gradient Descent

* Instead, suppose we start at:

Slope is negative here

We want to move downwards so that J(8,) decreases

We must increase 6,

~af
°

Therefore, the update equation must be:

0, := 0, — o x (negative number)

B, increases as we want it to



Selection of o
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Local vs global minima

* A cost function may have more than one minimum
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* In the case of the house price model and all linear models, J(0) is a
convex function, so there is only one minimum.



Performance evaluation

* There are several metrics which can be used
when predicting continuous variables:

1 & 5
* Mean square error: — Y (Y -Y)
i=1
1 T ) N
* Mean absolute error: —> |y, — Y]
T —1

Y U A r .-:'_‘ 2
sum scquared regression (SSR) YU (Y — ¥i)-

* R%Z 11— . o = 1 —
total sum of squares (55T Z:I:] Y, — Yi|?

* We can calculate these metrics on both the
training set (e.g. 80% of total data) and the
unseen testing set (e.g. 20%)

* We can also observe the convergence of the
model from the cost function vs # iterations

Cost function
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Jupyter notebooks

* Jupyter notebooks are a browser-based interactive development environment.

ZJupyter spectrogram s A
File Edit View Insert Cell Kernel Help ‘ Python 3 O

+ = @ B 4+ ¥ MW B C Markdown s CellToolbar

Simple spectral analysis

An illustration of the Discrete Fourier Transform

And we can easily view it's spectral structure using matplotiib’s builtin specgram routine:
In [5]: £ig, (axl, ax2) = plt.subplots(l,2,figsize(l6,5))
axl.plot(x); axl.set_title('Raw audio signal')

ax2.specgram(x); ax2.set_title('Spectrogram');

aw audio signal

AT P \-'-_v o]

* There many possible setups, including launching from a terminal in a Python virtual environment
or else using a GUI such as Anaconda (recommended for beginners)



Jupyter notebooks

* https://www.anaconda.com/download
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‘ Environments o o
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DataSpell

- Community
Online Data Analysis Tool with smart coding

assistance by JetBrains. Edit and run your
Python notebooks in the cloud and share
them with your team.

Dataspell is an IDE for exploratory data
anelysis and prototyping machine learning
models. It combines the inkeractivity of
Jupyter notebooks with the intelligent
Pythen and R coding assistance of PyCharm
in one user-friendlv environment.
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Spyder

Qt Console
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Sdientific PYthon Development:
EnviRenment. Powerful Python IDE with
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PyQt GUI that supperts inline figures, proper
multiline editing with syntax highlighting,
graphical calltips, and more.

ANACONDA
Secure your software p ! p !
sup?ly ‘h,m,n from | Launch | | Launch |
the source \ \
Upgrade Now
=
»
End-to-end package [
security, guaranteed
Rstudio
1.1.456

Documentation
A set of integrated tools designed to help
you be more productive with R. Includes R
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IBM Watson Studio Cloud

IBM Watson Studio Cloud provides you the
tools to analyze and visualize data, to cleanse
and shape data, to create and train machine
learning models. Prepare data and build
models, using open source data science tools
or visual modelina.

| Launch |

V5 Code

1.68.1
Streamlined code editor with support for

development operations like debugging,
task running and version contrel.

| Launch |

JupyterLab

332

An extensible environment for interactiye
and reproducible computing, based on
Jupyter Notebook and Architecture.

| Launch |

Glueviz

100

Multidimensional data visualization across
files. Explore relationships within and among
related datasets.

| Install |
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Notebook
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Web-based, interactive computing notebook
environment. Edit and run human-readable

docs while describing the data analysis.

| Launch |

Orange 3

3.260

Component based data mining framework.

Data visualization and data analysis for
novice and expert. Interactive workflows
with a large toolbox.

| Install |

PyCharm Community

2022.1.1
JAn IDE by JetBrains for pure Python

gPvelopment. Supports code completion,

listing, and debugging.

[ Launch |

PyCharm Professional

Afull-fledged IDE by JetBrains for both

Scientific and Web Python development.

Supports HTML, JS, and SQL.

| Install |




Jupyter notebook

* Linear regression



Linear Regression: summary

* Terminology: hypothesis, weights, hyperparameters, training/testing set,
* Training via an iterative process (gradient descent)

* We have seen the difference between
e parameters/weights (e.g. theta) which are learnt during training
* hyperparameters (e.g. alpha) which need to be set in advance

* We have seen how to evaluate performance



Introduction to Classification

* Consider a simple example:

* “Sorting incoming fish on a conveyor belt according to
species using optical sensors”

Sea bass
Species

\

Salmon

24



Machine Learning

Learning
Supervised Unsupervised
Regression Classification Classification

T

E.g. Linear Regression, E.g. Logistic Regression,  Clustering techniques
Neural Nets, SVR Neural Nets, SVM e.g. K-Means, DBScan,

25



Classification

Data collection

Feature
extraction

Model fitting
(training)

Model testing

Performance
evaluation

26



Feature extraction

 We have to think of features which could allow us to discriminate
between salmon and sea bass
* Length
* Weight
* Width
* Number and shape of fins

salmon sea bass salmon salmon seabass sea bass

27



Classification

* Suppose we consider the length of the fish as a
possible feature for discrimination

salmon sea bass
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Preliminary results

* We observe that the length on its own is a poor feature
* About 20% misclassification rate

e Suppose we now select the weight as a possible feature
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An improved classifier

* If we now combine the width and weight features:

width

22 salmon . sea bass

20 .t
19 ) . .
18
17 ICF -
16 . '
15
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Overfitting

* Naively, the best decision boundary would be the one below:

= [ighiness
2 4 G 8 1

 However, this means that the model will not perform
well for new data (therefore it does not generalize well) "



The classification problem

e Underfitting:
* model not detailed enough
* Bad performance on training and test datasets

* Overfitting:
* Model too detailed and computationally expensive
* Excellent performance on training set, bad performance on test set



An even better decision boundary

* A 2D polynomial might give the best fit and tradeoff:
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Reminder: Linear Regression

* Regression analysis: a statistical process for estimating the
relationship between variables

* Any regression model involves the following:

* The independent variables X (known)
* The dependent variable Y (known)
* The vector of parameters 6 (unknown)

where Y = f(X, 0)



Linear regression

* Linear regressor does not work for classification:
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* This is a single-input binary class problem.

* In classification, we need a separator or a decision
boundary which splits the space into regions.

35



Intuitive derivation of logistic regression model

* Consider a two-input binary class problem.

e Suppose we plot our data:

e Where:

e x1, x2 are the inputs
e O and A are the classes

e X are the new instances
36



Intuitive derivation of logistic regression model

* Thanks to the separator:
* new instances which fall above the line will be classified as A
* new instances below the line will be classified as O.

* We need to automatically find a separator such as the one plotted.



Intuitive derivation of logistic regression model

* Suppose that we manage to come up with a valid equation for
the separator visually

3.8 \

*2 | T

* The equation of the line is y = mx + ¢, and suppose that we
measure m =-7/12 and c=+7/2

* Sowe have X, =7/2-7/12 X,
c Or7X,+12X,-42=0



Intuitive derivation of logistic regression model

* |f we choose points on the line, the equality holds.
*E.g. X;=3,X,=7/4;7*3+12*7/4-42 =0

* NowletX,=4,X,=3;28+36-42=22>0

* AndletX;=1,X,=5/2;7+30-42=-5<0

* So points below the line will give us —ve values, while
points above the line give +ve values.



Intuitive derivation of logistic regression model

 So we could write our model as:
* hg(x) = (8, + 8,X; +6,X,)

* We want our output to be either O or 1 (i.e. either the input belongs to one class, or else
to the other):

2

J

 However this is a non-differentiable, discontinuous function

* We like differentiable functions as it allows us to minimize the cost function using
gradient descent ©



Intuitive derivation of logistic regression model

* We would therefore prefer to use another function,
such as the sigmoid or logistic function.

41



Cost function

* Inspired from the regression cost function:

Trk

J(0) = —— Z yDlog(he(x')) + (1 — yNlog(1 — he(z'))

i

* Explanation:
* By definition of logistic function, hy(x) values vary from O to 1
 yiseitherOor1 .

* So: J(0) = —— Z log(hg(z" ,ify=1
m

FrL

J(0) = ——Z.-’Ug(l — hg-}(f{ })} ify=0

(i

42



Minimizing the cost function

* We use gradient descent as for linear regression

* We note that the partial differentiation of the cost
function for 6, is the same as for linear regression (!)

. ] |

Update equation: r;-i"j- - — r;-i'j — ﬁ.r—.f[ﬂﬂ. 1 )
. — 1 E ho (') — ') 2V
Where: r}'ri-i' - (he(: -y ),



Jupyter notebook

* Logistic regression
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Different learning paradigms

UNSUPERVISED MACHINE LEARNING - SUPERVISED MACKINE LEARNING




Different learning paradigms

e Reinforcement learning:
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Meaningful
Compression

Structure Image

. o Customer Retention
Discovery Classification

Big data Dimensionality Feature Idenity Fraud

isualistai i Classification Diagnostics
Visualistaion Reduction Elicitation Detection

Well-defined problems
with “small” search space

Data mining,
pattern discovery

Advertising Popularity
Prediction

Learning Learning Weather

Forecasting
L]
Machine Y

Growth
Prediction

Recommender Unsupervised Supervised

Systems

Clustering Regression
Targetted

Marketing

Market
Forecasting

Customer

Segmentation L e a_ r n i n g

Estimating
life expectancy

Real-time decisions Game Al

Reinforcement Well-defined problems when search space

Learning is too massive to use in offline training

Robot Navigation Skill Acquisition

Learning Tasks
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Biological Neural Networks

A neuron

dendrites

dendrites

core

/ o




A Simple Artificial Neuron

* A neuron Y receives inputs from

neurons X,, X, and X,. ®\

* The outputs from these neurons are x;,
X2
X2 X3. O

w2

* The netinputy,, to the neuron Y is the @ /W3
3

sum of the weighted signals from the
neurons.

Yin — W1T1 + WL + W3T3



Typical ANN Architecture

* A further layer of neurons may be
connected after neuron Y. @\
Wi v1->@
* In this case, the middle layer consisting @ w2>:<
of neuron Y is referred to as a ‘hidden’ - V2->@
layer. @/

. Input Hidd
* The output of Y = f(y, ), where f is called Units Units Tits

the activation function.




Different activation functions

it x < 0.
if x > 0.
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Typical ANN Architectures

* More complicated problems may
require a multilayer network.




* Training involves three steps:

NN Training using Backpropagation

 Note the inclusion of a bias neuron in W%D\ m/ﬁ\ wo./

each layer (except the output)
AA —
* Analogous to the intercept when / "“»‘A

tryingtofite.g.y=ax+b

* Feedforward
* Backpropagation
* Weights adjustment

Figure 6.1 Backpropagation neural network with one hidden layer.



Neural Network — Backpropagation gm
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e \We can increase the number of hidden

Increasing the number of hidden layers

* Asingle hidden layer may not be
sufficient for some problems.

layers for as much is needed.




Hyperparameters (so far..)

* Number of neurons in each layer
* Number of layers

* Activation function

* Learning rate



Spiral Classification using a NN

* Jupyter notebook



Spiral Classification

e First network:

* Multiple linear layers -> can be rewritten as a single linear layer (i.e. a linear
classifier)

* We need a series of nonlinear layers to “warp the data”



Animation of warping by neural network




Spiral Classification

e Second network:

* One hidden layer

* Layers have logistic activation functions -> non-linear

* Decision boundaries are now non-linear
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What is unsupervised learning?

As opposed to supervised learning which we have seen so far.
Unsupervised: there are no labels / targets in the dataset.

We agle more interested in uncovering information in our data (data mining) rather than predicting
new data.

E.g. anomaly detection (fraud, equipment failure, medical problems..), market research, identifying

patterns and groups of objects etc

2 | [ ¢
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Unsupervised learning techniques ' 64
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Clustering

* Clustering: grouping a set of items together in
such a way that items in one group (a cluster)
are more similar to each other than to those in
other groups.

Original unclustered data Clustered data

* There are several types of clustering algorithms:
e Hierarchical clustering (e.g. Linkage clustering) , :
e Centroid-based clustering (e.g. K-Means) Lo iz s 43 e Lo 1 13 45

 Distribution-based clustering (e.g. Expectation-
Maximization)

e Density-based clustering (e.g. DBSCAN)

|
N - o - N w H w (=]

|
N - o - N w & w o

Gianluca Valentino Unsupervised learning techniques 65



K-Means clustering algorithm

Suppose we have a dataset x,, X,, X, ..., Xy} consisting of N observations of D dimensional vectors x
(i.e. D features).

The goal is to partition the dataset into K clusters.

* Therefore, the number of clusters in our dataset needs to be known a priori.

A cluster is a group of data points whose distances between one another in D-dimensional space are
small compared to points outside the cluster.

This can be formalized by introducing a D-dimensional mean vector u,, where k= 1,2,3,...K.

* This represents the center of the cluster.



K-Means clustering algorithm

* The K-means clustering algorithm assigns a vector x;; to the cluster which
minimizes the distortion measure: J, = Ilx;; — P

* The mean vector is then updated by computing the mean intensity value of
the considered cluster such that:

2. D2 FijiXiy
i
ZZ”:‘J

i J

1, ifk=argmin(lx;. — u,II*)
ﬂk - where: rl-J-,k p— { Ek LJ Pk

0, otherwise.



Clustering

* Jupyter notebook



Anomaly Detection

* The process of determining which points in a dataset are different
than most of the others.

* Types of anomalies:

* Point anomalies
 Contextual anomalies
* Collective anomalies



Point anomalies

Normal U An individual data point is anomalous
F, / “‘ \ i“lmj y with respect to the surrounding data
.‘ ( O K
O 0,' e




Contextual anomalies

* An individual data instance is anomalous within a context
 Also referred to as a conditional anomaly

Monthly Temp

: Anomaly
Normal - I'/ ~ /
f t 1 \ tg 1
1N | - 1 "
Mar Jun  Sept Dec Mar Jun Sept [Dec Mar Jun  Sept Dec

Time



Collective anomalies

e A collection of related data instances is anomalous

e Requires a relationship among data instances
e Sequential data
» Spatial data
* Graph data

* The individual instances within a collective anomaly are not anomalous by
themselves

anomalous subsequence



Anomaly Detection

* In anomaly detection, we want to identify outliers which do not resemble the bulk
of the dataset.

* Note that we may use supervised learning techniques for anomaly detection (e.g.
a dataset which was previously labelled as “normal” or “abnormal”)

* This would be a 2-class classification problem
e ..butintroduces issues due to the expected class imbalance

* There are a variety of techniques (for point based):
* Distance based methods (k nearest neighbours) * For time-series data:
* Density based methods (local outlier factor) e LSTM autoencoders
* One-class SVMs
e Clustering

* Transformer models



Anomaly Detection — kNN distance

« Compute an outlier score as distance to k™" nearest neighbor

L 1§

e Score is sensitive to choice of k s

108
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404

Outlier
Score

Figure 10.4. Outlier score based on the
distance to fifth nearest neighbor.



Anomaly Detection — kNN distance
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Figure 10.5. Outlier score based on the dis-
tance to the first nearest neighbor. Nearby out-
liers have low outlier scores.



Anomaly Detection — kNN distance
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Figure 10.6. Outlier score based on distance
to the fifth nearest neighbor. A small cluster

becomes an outlier.



Anomaly Detection — kNN distance
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Figure 10.7. Outlier score based on the dis-
tance to the fifth nearest neighbor. Clusters of
differing density.



Local Outlier Factor

* One of the most popular anomaly detection algorithms (proposed > 20 years ago).
* Local: is able to find local anomalies.

e Basic idea:

1. Find the k-nearest neighbours

2. For each instance, compute the local reachability density (LRD):

D _Ben, (4) Teachability-distance; (A, B)
[Nk (4)]

Ird(A) :=1/ (

where: - N,(A) is the set of k nearest neighbours of A
- reachability-distance (A, B) is the maximum between (a) the distance of A and B, or (b) the k-distance of B (i.e. the
distance of B to its own k™ nearest neighbour.
- N, (A)[ is the cardinality of the set.



Local Outlier Factor

3. For each instance, compute the ratio of local densities to obtain the local
outlier factor (LOF):

5 Ird(B) > (B

BENL(A) Ird Ird(B

LOF(A) := oW B /lrd(A)
[Nk (A)| [Ni(A)]

* This is therefore the average local reachability density of the neighbours
divided by the object’s own local reachability density.

 LOF ~ 1 indicates that an object is comparable to its neighbours (not outlier)



Local Outlier Factor

e A rule of thumb: the number of neighbours considered is typically chosen:

1. greater than the minimum number of objects a cluster has to contain, so that
other objects can be local outliers relative to this cluster;

2. smaller than the maximum number of close by objects that can potentially be
local outliers.

e This info is generally not available a priori, but taking k = 20 seems to work
well in general.

* The larger the LOF score, the more likely it is that a data point is an outlier.



Local Outlier Factor
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Anomaly Detection

* Jupyter notebook



Outline

* ML 101: linear & logistic regression

* Different learning paradigms and tasks
* Neural Networks

* Clustering & Anomaly detection

* Advanced topics: CNNs and RL



CNNs: ML vs Deep Learning

Machine Learning

& &y 2273 [

Input Feature extraction Classification Output

Deep Learning

& — izt — [

Input Feature extraction + Classification Output




Convolutional Neural Network

Convolution Pooling Convolution Pooling Fully Fully Output Predictions

+ RelU + RelU Connected Connected
1
1

Dog (0)
Cat (0)
Boat (1)
]
1 =

Erotal = Y, 3(target — output)?

.'Ir.‘. .Ilr'l
Feature Extraction from Image Classification

Output
Layer
FC
Layer 2
FC
Layer 1

Pooling
Layer 2

Convolution
Layer 2

Pooling
Layer 1

* VisuaIiZing a CNN: ' .; - Y iy S

Input Layer




Edge Detection using the convolution operator

Suppose we have a vertical edge in our image

filter
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Segmentation
e’ ,’"“"w" 3 '

Figures copyright Shaoging Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with Figres copyright Clement Farabet, 2012.
permission. Reproduced with permission. [Farabet et al,’ 201 2]
[Faster R-CNN: Ren, He, Girshick, Sun 2015]




Image-based diagnhostics using CNNs

Objective: predict beam parameters given input beam distribution, gun phase and solenoid
strength at FAST facility.

 PARMELA simulation data of first 8 m of FAST low energy beamline used.

v{ Average Energy (E) l Table 1: Max and Min Values for Predicted Parameters Table 3: Model Performance at CC2 Exit
/ Vi Emittances (¢, , € )] Param. Max  Min Max  Min Param.  Train. Train. Val. Val.
\; Hybrid [~ Gun  Gun ccz c2 MAE  STD MAE  STD

Neural r-—>| Beta Function Values (B, By)\

N, 5001 1015 5001 1004 N, 103.7 141.2 1233 176.8
Network [~
' Gun Phase | \A[ Alpha Function Values (a, , ay)] en [m-rad]  25e-4 1.6e-6  4.0e-4 9.1e-7 Eux 1.0e-5  12e-5  12e-5  1.6e-5
] | | - - X 1.0e-5  13e-5  12e5  1.5e-5
| Solenoid Strength / A Number of Particles (N,)| Gy[mrad] 24ed 16e6 404 8.5e7 Eay ¢ ; e e
o, [rad] 141 7751 08 -149.8 Ly 34 6.6 3.1 5.9
_ _ o [rad] 145 7970 0.7 -154.5 oy 34 6.6 3.1 5.9
CNN: used_ to extract features from wrtuayl cathode image . B.[miad] 9504 79e2 8202 07 b, 163 335 147 278
NN: combines these features together with gun phase and solenoid strength b lmiad] 8968 84e2 157 081 b, 64 336 148 275
] E[MeV] 46 3.2 472 4238 E 40e2  39e2  46e2  62e2
23] 2 —
» o § o - Training set size: 894
Validation set size: 600
D m) Outputs
Gun Phase [map
- — 88
Solenoid Strength \mp A. Edelen et al., Proc. NAPAC2016.




What is Reinforcement Learning?

* So far: Supervised Learning
e Data: (X, )
* Goal: Learn a functionto map X ->vy

 Examples: classification, regression,
object detection etc

. . Abnormal
* So far: Unsupervised Learning

* Data: X (noy)

* Goal: Learn some underlying hidden
structure in the data

* Examples: clustering, dimensionality
reduction, anomaly detection e

relative density (LOF) outlier scores

Normal



. . g, =
What is Reinforcement Learning: ﬁﬁﬁﬂ

=h]=
Environment
* In Reinforcement Learning, an agent

interacts with an environment to learn Rewan
Interpreter

how to perform a particular task well.
% \@24

Agent

* How is it different to the other learning paradigms?
* There is no supervisor, only a reward.
* The agent’s actions affect the subsequent data it receives
* Feedback is delayed, and may be received after several actions

Action



Examples of Reinforcement Learning

Fly a helicopter Ensure a corrected orbit
k.
- 7 \i
o‘???&\:; < = ,%
- \
SR
\\\\\\\\\\\\\

Play Atari games better
than humans




Rewards

* The agent receives feedback from the environment through reward
* Areward R, is a scalar feedback signal

* It is an indication of how well the agent is doing at step t

* The agent’s job is to maximise cumulative reward

e Examples:
* Winning a game
* Achieving design luminosity in a collider
* Maintaining an inverted pendulum at the top



Sequential decision making

e Goal: select actions to maximise total future reward
* Actions may have long term consequences
* Reward may be delayed

* It may be better to sacrifice immediate reward to gain more long-
term reward

e Examples:
* A financial investment (may take months to mature)

* Blocking opponent moves (might help winning probability many moves from
now)



States

e State: what the agent is observing about the environment

e Examples:
* Pixels in an image (of a game, of a driverless car, etc)
e Data from beam instrumentation in an accelerator
* The position of all pieces in a game of chess



The agent and its environment

Action a,

Reward r,
Next state s, 4

How can we formalize this mathematically?



Markov Decision Process (MDP)

* Markov property: current state
completely characterizes state of
the world.

* Defined by: (S, A, R, P, y)
* S: set of possible states
* A: set of possible actions
* R: reward for a given (state, action)
pair
* P(s,|s,., a,): transition probability
e y: Discount factor (usually close to 1)

SO

AO
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Markov Decision Process (MDP)

* At time step t = 0, environment samples initial state s, ~ P(s)

 Then, for t = 0 until done:
* Agent selects action a,
* Environment samples reward r,~ R(. | s, a,)
* Environment samples next states,,, “P(. | s, a,)
* Agent receives reward r, and next state s,, ;.

* A policy rtis a function which specifies what action to take by the agent in
each state.

* Objective: find a policy n* that maximizes cumulative discounted reward Z’Yt?‘t
t=>0



A simple MDP: Grid World

actions = {
1. right =»
2. left <=
3. up 1
4. down ‘
}

Objective: reach one of the terminal states
(green) with the least number of actions



A simple MDP: Grid World

+l+l

o

R

Random Policy

Optimal Policy




Definitions: Value function and Q-value function

* Following a policy produces sample trajectories (or paths) s,, a,, o, S, @y, ) -

* How good is a state?

* The value function at state s is the expected cumulative reward from following the
policy from state s:

V7(s) = ny T¢|8g = 8,

t>U

* How good is a state-action pair?

* The Q-value function at state s and action a, is the expected cumulative reward from
taking action a in state s and then following the policy:

=3 —

Q" (s,a) =E Zf}ft*rt\sﬂ =8,y =Q,T

t>0




Exploration vs Exploitation

Exploration: Increase knowledge
for long-term gain, possibly at the
expense of short-term gain

Exploitation: Leverage current knowledge
to maximize short-term gain

During training, we could e.g.:
30% of the time we choose a random action
70% of the time we choose an action with the most expected value



RL agent types

)

Given the Model

\—{ AlphaZero

RL Algorithms
!
{ ¥
Tries to Iearn a pohcy Model-Free RL Model-Based RL
directly instead of ] (
learning the exact value of ( )
every (state, action) pair  { 1 {
Policy Optimization Q-Learning Learn the Model
<Policy Gradient DQN > —> World Models
—— —»[ DDPG Ji— — )
< A2C / A3C ;— ‘ —> C51 —> I2A
e — 4;J T™h?2 |..r_ - J
( Combines Policy Gradients (
PPO . .. QR-DQN —>] MBMF
and Q-learning by training y
( TRPO ) both an actor (the policy) ( HER ) ( MBVE
and a critic (the Q-function)

A

-> 2 neural nets

Source: spinningup.openai.com



summary

* In these 2 hours, we started from the basics (linear & logistic regression)
and explored several models and learning paradigms.

* The last few years have seen a high growth in the take-up of ML by the
particle accelerator and experimental physics community
* Deep learning developments
* Increase in scale and complexity of machines
* Availability of “Al-ready” data

ML will be a key tool to help meet demands for boosting performance,
increasing autonomy and availability/reliability.



Back up slides



Neural Network backpropagation - details



Nomenclature

Woxk

Y

Input training vector:

 F_§ £ TR O,
Output target vector:

8 (fgsiiisBhs e, s Bl

Portion of error correction weight adjustment for w;x that is due to an
error at output unit Y,; also, the information about the error at unit )
that is propagated back to the hidden units that feed into unit Y,.
Portion of error correction weight adjustment for vy, that is due to the
backpropagation of error information from the output layer to the hidden
unit Z,. :
Learning rate. e
Input unit i:

For an input unit, the input signal and output signal are the same, namely,
Xie

Bias on hidden unit j.

Hidden unit j:

The net input to Z, is denoted z_in;:

z_in, = Vo, + 2 XiUij.
i

The output signal (activation) of Z;is denoted z;:
= £ (Z—l"lj)-
Bias on output unit k.

Output unit :
The net input to ¥, is denoted y_in,:

y-ing = wox + 3, Zjw.
J

The output signal (activation) of Y, is denoted Yi:
Y = f(y-ing).



Training
Algorithm

Step 0.

Step 1.

Initialize weights.
(Set to small random values).

While stopping condition is false, do Steps 2-9.

For each training pair, do Steps 3-8.

Feedforward:

Step 2.

Step 3.

Step 4.

Each input unit (X;,i = 1, ..., n) receives
input signal x, and broadcasts this signal to all
units in the layer above (the hidden units).
Each hidden unit (Z;,j = 1, ..., p) sums its
weighted input signals,

z_.in, = Voy + 2 XiUijy
[l |

applies its activation function to compute its
output signal,

= f(z_in/).

and sends this signal to all units in the layer
above (output units).



Step 5.

Each output unit (Y., k = 1, ..., m) sums
its weighted input signals,
P

y-ing = wor + 3, z;wjk
J=1

and applies its activation function to compute
its output signal,

Yi = f(y-ing).

Backpropagation of error:

Step 6.

Each output unit (Y, k = 1,. . ., m) receives
a target pattern corresponding to the input

training pattern, computes its error informa-
tion term,

Ox = (tx — yu)f'(y—ing),

calculates its weight correction term (used to
update w, later),

A WJk - G.Skz_ig

calculates its bias correction term (used to up-
date wo, later),

AWN = a&k.

and sends 3, to units in the layer below.



Step 7.

— T e m

Each hidden unit (Z;,j = 1, . . . . p) sums its
delta inputs (from units in the layer above),

Uﬂj = 2 Bijk,
k=

multiplies by the derivative of its activation
function to calculate its error information
term,

3} - 5—1.”1 f’(z—i"j)o

calculates its weight correction term (used to
update v;; later),

AUU = GBJX;,

and calculates its bias correction term (used
to update vy, later),

Avoj - 08_,'.



Step 9.

Update weights and biases:
Step 8. Each output unit (Y., k = 1, .. ., m)updates
its bias and weights (j = 0, ..., p):

wir(new) = wi(old) + Awj.

Each hiddenumit (Z,,j = 1, ..., p) updates
its bias and weights (i = 0, . . ., n):

UU(“CW) = UU(Old) + AUU.

Test stopping condition.



Reinforcement Learning

* What is Reinforcement Learning?

* RL terminology: states, actions, reward, policy
* Value function and Q-value function

* Q-learning and neural networks

* Grid World and Cart Pole



What is Reinforcement Learning?

* So far: Supervised Learning
e Data: (X, )
* Goal: Learn a functionto map X ->vy

 Examples: classification, regression,
object detection etc

. . Abnormal
* So far: Unsupervised Learning

* Data: X (noy)

* Goal: Learn some underlying hidden
structure in the data

* Examples: clustering, dimensionality
reduction, anomaly detection e

relative density (LOF) outlier scores

Normal
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What is Reinforcement Learning: ﬁﬁﬁﬂ

=h]=
Environment
* In Reinforcement Learning, an agent

interacts with an environment to learn Rewan
Interpreter

how to perform a particular task well.
% \@24

Agent

* How is it different to the other learning paradigms?
* There is no supervisor, only a reward.
* The agent’s actions affect the subsequent data it receives
* Feedback is delayed, and may be received after several actions

Action



Cat Agent

State: Sitting

Observable

Come here!

Reward

Stay hungry.. M ﬁ

Action: waIk

Actlon keep sitting




Examples of Reinforcement Learning

Fly a helicopter

‘ : :4 Make a robot walk

.
s
S Q
4 \
\
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Play Atari games better
than humans




Rewards

* The agent receives feedback from the environment through reward
* Areward R, is a scalar feedback signal

* It is an indication of how well the agent is doing at step t

* The agent’s job is to maximise cumulative reward

e Examples:
* Winning a game
* Achieving design luminosity in a collider
* Maintaining an inverted pendulum at the top



Sequential decision making

e Goal: select actions to maximise total future reward
* Actions may have long term consequences
* Reward may be delayed

* It may be better to sacrifice immediate reward to gain more long-
term reward

e Examples:
* A financial investment (may take months to mature)

* Blocking opponent moves (might help winning probability many moves from
now)



States

e State: what the agent is observing about the environment

e Examples:
* Pixels in an image (of a game, of a driverless car, etc)
e Data from beam instrumentation in an accelerator
* The position of all pieces in a game of chess



The agent and its environment

Action a,

Reward r,
Next state s, 4

How can we formalize this mathematically?



Markov Decision Process (MDP)

* Markov property: current state
completely characterizes state of
the world.

* Defined by: (S, A, R, P, y)
* S: set of possible states
* A: set of possible actions
* R: reward for a given (state, action)
pair
* P(s,|s,., a,): transition probability
e y: Discount factor (usually close to 1)
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Markov Decision Process (MDP)

* At time step t = 0, environment samples initial state s, ~ P(s)

 Then, for t = 0 until done:
* Agent selects action a,
* Environment samples reward r,~ R(. | s, a,)
* Environment samples next states,,, “P(. | s, a,)
* Agent receives reward r, and next state s,, ;.

* A policy rtis a function which specifies what action to take by the agent in
each state.

* Objective: find a policy n* that maximizes cumulative discounted reward Z’Yt?‘t
t=>0



A simple MDP: Grid World

actions = {
1. right =»
2. left <=
3. up 1
4. down ‘
}

Objective: reach one of the terminal states
(green) with the least number of actions



A simple MDP: Grid World

+l+l
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R

Random Policy

Optimal Policy




The optimal policy t*

* Need to find the optimal policy m* that maximizes the sum of rewards.

* To handle randomness (initial state, transition probability etc):
* Maximize the expected sum of rewards

" =argmaxE |} o'r|m| with so ~ p(s0),ar ~ m(:|s¢), 8141 ~ p(:|8¢, ar)
>0




Definitions: Value function and Q-value function

* Following a policy produces sample trajectories (or paths) s,, a,, o, S, @y, ) -

* How good is a state?

* The value function at state s is the expected cumulative reward from following the
policy from state s:

V7(s) = ny T¢|8g = 8,

t>U

* How good is a state-action pair?

* The Q-value function at state s and action a, is the expected cumulative reward from
taking action a in state s and then following the policy:

=3 —

Q" (s,a) =E Zf}ft*rt\sﬂ =8,y =Q,T

t>0




Bellman equation

* The optimal Q-value function Q* is the maximum expected cumulative reward
achievable from a given (state, action) pair:

t>0
e Q* satisfies the Bellman equation:

Q*(s,a) = Eg ¢ [’r‘ + 7 max Q*(s',a’)|s, a,]
a

* Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are
known, then the optimal strategy is to take the action that maximizes the
expected value of |

r+yQ*(s',a)

e Optimal policy m* -> taking the best action in any state as specified by Q*.



Solving for the optimal policy

* Value iteration algorithm: use the Bellman equation as an iterative update:
Qi+1 (87 CL) =E {T T 7y max Qi(8,7 a’,)|83 a‘]
a

* Q will converge to Q* as i -> infinity.

learned value

e
ral Ty

Q" (stya:) < (1 —a) - Q(s¢,a¢) + &2 (»E« + v - maxQ(sy,a) )
—— ) S~ N P
old value learning rate reward  discount factor g

estimate of optimal future value



Exploration vs Exploitation

Exploration: Increase knowledge
for long-term gain, possibly at the
expense of short-term gain

Exploitation: Leverage current knowledge
to maximize short-term gain

During training, we could e.g.:
30% of the time we choose a random action
70% of the time we choose an action with the most expected value



Grid world example

e Agent starts at bottom left.

e At each step, agent has 4
possible actions (up, down,

left, right).

e Black square: agent cannot
move through it.

Start e Assume each action is
deterministic.




Grid world example

* First, define the grid world parameters:

import numpy as np

BOARD ROWS = 3
BOARD COLS = 4
WIN STATE = (0, 3)
LOSE STATE = (1, 3)
START = (2, 0)
#DETERMINISTIC = False
DETERMINISTIC = True



Grid world example

e Define the reward:

def giveReward(self):

if self.state == WIN STATE:
return 1

elif self.state == LOSE STATE:
return -1

else:

return 0



Grid world example

* Probabilistic result of taking an action:

def chooseActionProb(self, action):

"right"], p=[0.8,

"left", "right"], p=[0.

] L1

up

r

if action == "up":
return np.random.choice(["up", "left",
if action == "down":
return np.random.choice(["down",
if action == "left":
return np.random.choice(["left",
if action == "right":

return np.random.choice(["right",

L]

up

n

r

"down"], p=[0.8,

"down"], p=[0.8,

Oil’
8, 0.
0.1,

0.1,

0.17)
1, 0.1]
0.1])

0.17)



Grid world example

* Define how the state is updated
when the action is taken by the

agent.

 Need to check that the next state

is not the black box or else
outside the grid.

def nxtPosition(self, action):

momn

action:

up, down, left, right

return next position on board

mwomomn

if self.determine:

if action == "up":

nxtState = (self.state[0] - 1, self.state[l])
elif action == "down":

nxtState = (self.state[0] + 1, self.state[l])
elif action == "left":

nxtState = (self.state[0], self.state[l] - 1)
else:

nxtState = (self.state[0], self.state[l] + 1)

self.determine = False

else:

# non-deterministic

action = self. chooseActionProb(action)
self.determine = True

nxtState = self.nxtPosition(action)

#self.showBoard()

# if next state is legal
if (nxtState[0] >= 0) and (nxtState[0] <= 2):
if (nxtState[l] >= 0) and (nxtState[l] <= 3):

if nxtState != (1, 1):
return nxtState

return self.state



Grid world example
* Tradeoff between exploration (new info) and exploitation (greedy actions):

def chooseAction(self):
# choose action with most expected value
mx nxt reward = 0
action = ""

if np.random.uniform(0, 1) <= self.exp rate:
action = np.random.choice(self.actions)
else:
# greedy action
for a in self.actions:
current position = self.State.state
nxt reward = self.Q values[current position][a]
if nxt reward >= mx nxt reward:
action = a
mx nxt reward = nxt reward |
# print("current pos: {}, greedy aciton: {}".format(self.State.state, action))
if action == "":
action = np.random.choice(self.actions)

return action



Grid world example

* Define stopping condition:

def isEndFunc(self):
if (self.state == WIN STATE) or (self.state == LOSE STATE):
self.isEnd = True



Grid world example * Bring everything together:

def play(self, rounds=10): i
i=0 E
while i < rounds: |

# to the end of game back propagate reward !
if self.State.isEnd:
# back propagate |
reward = self.State.giveReward()
for a in self.actions: |
self.Q values[self.State.state][a] = reward
print ("Game End Reward", reward) -
for s in reversed(self.states):
current q value = self.Q values[s[0]][s[1]] :
reward = current g value + self.lr * (self.decay gamma * reward - current_g value)
self.Q values[s[0]][s[1l]] = round(reward, 3)
self.reset()
i+=1
else:
action = self.chooseAction()

# append trace

self.states.append([ (self.State.state), action])
print("current position {} action {}".format(self.State.state, action))
# by taking the action, it reaches the next state :
self.State = self.takeAction(action)
# mark is end -
self.State.isEndFunc() .
print("nxt state", self.State.state) i
print("---—-———----- i i i o ")
self.isEnd self.State.isEnd !



Solving for the optimal policy: Q-learning

* Value iteration algorithm: use the Bellman equation as an iterative update:
Qit1(s,0) = E [r + ymax Qi(s',a)|s, ]

* Q will converge to Q* as i -> infinity.

* What is the problem with this?

* Not scalable: must compute Q(s, a) for every state-action pair. If state is e.g. current
game state pixels, computationally infeasible to compute for entire state space!

 Solution: use a function approximator to estimate Q(s,a).
* A neural network!



Solving for the optimal policy: Q-learning

* Q-learning: use a function approximator to estimate the action-value
function:

Q(s, a; ©) = Q*(s, a)
Where O are the neural network weights which need to be learned.

* If the function approximator is a deep neural network -> deep g-learning

(DQN)!



RL agent types

)

Given the Model

\—{ AlphaZero

RL Algorithms
!
{ ¥
Tries to Iearn a pohcy Model-Free RL Model-Based RL
directly instead of ] (
learning the exact value of ( )
every (state, action) pair  { 1 {
Policy Optimization Q-Learning Learn the Model
<Policy Gradient DQN > —> World Models
—— —»[ DDPG Ji— — )
< A2C / A3C ;— ‘ —> C51 —> I2A
e — 4;J T™h?2 |..r_ - J
( Combines Policy Gradients (
PPO . .. QR-DQN —>] MBMF
and Q-learning by training y
( TRPO ) both an actor (the policy) ( HER ) ( MBVE
and a critic (the Q-function)

A

-> 2 neural nets

Source: spinningup.openai.com



Cartpole Problem

* Objective: Balance a pole on top of a movable cart

e State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart (or not)
Reward: +1 at each time step if the pole is upright
(within some limits)

_’
M | F 5

(7777777777777 777777777777



OpenAl Gym

* In order to train an agent to perform a task, we need a
suitable physical environment.

* OpenAl gym provides a number of ready environments
for common problems, e.g. Cart Pole, Atari Games,
Mountain Car

* However, you can also define your own environment
following the OpenAl Gym framework (e.g. physical
model of accelerator operation)

@OpenAI



OpenAl Gym — Cart Pole Environment

* Let’s have a look at the Cart Pole environment in cartpole.ipynb

* Main component: step function
e Updates state
* Calculates reward

* Also has rendering functionality



Implementation of a DON agent

* There are several ready implementations of RL agents
* E.g. Keras RL

* We first define the Q network architecture (in Keras fashion):

model = Sequential()
model.add(Flatten(input shape=(1,) + env.observation space.shape))
model.add(Dense(16))
model.add(Activation( 'relu'))
model.add(Dense(16))
model.add(Activation( 'relu'))
model.add(Dense(16))
model.add(Activation( 'relu'))
model.add(Dense(nb actions))
model.add(Activation( ' linear'))
print (model.summary())



Implementation of a DON agent

* We can use a ready-made policy (BoltzmannQPolicy)
* Builds a probability law on g-values and returns an action selected randomly according to this law.

* We also define the number of actions, the learning rate and the number of steps that
we want to train the agent for, trying to optimize some metric.

* Memory: stores the agent’s experiences
* Number of warmup steps: avoids early overfitting
* Target Model update: how often are weights of target network updated

memory = SequentialMemory(limit=50000, window length=1)

policy = BoltzmannQPolicy/()

dgn = DQNAgent(model=model, nb actions=nb actions, memory=memory, nb steps warmup=10,
target model update=le-2, policy=policy)

dgn.compile(Adam(lr=1e-3), metrics=[ 'mae'])

history = dgn.fit(env, nb steps=100, visualize=True, verbose=2)



