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Inverse models for anomaly detection
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AGS to RHIC transfer line
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Data generation principles
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AGS to RHIC transfer line study
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* Model training for the AGS to RHIC transfer
line
* Top Right: Fractional density of model error as a
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AGS to RHIC transfer line study

utvl uth2

* Right: Predicted corrector settings vs
the ground truth for the validation set

* Black: without quadrupole errors

* Red:a single quadrupole error of -20%

* Blue: a single quadrupole error of +20%
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Computing the Model Loss as Quadrupoles are Varied

* Model trained for 100k epochs

* Individually varied the quads over a
range of plus or minus 20% excitation

* All quads show sensitivity except ugé

* Many quads have minima at 0.0 with
some offset
* Longer training time can improve this

* Ensemble methods may be more efficient
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Consider an Ensemble of Models

® 23 models with random initializations: consider median and mean for output of the ensemble
®* Examine the ensemble output as you vary the quad strengths
[

Left: Ensemble output as a function of quad strength variation / Right: Ensemble output with ensemble variance
* Note clearly defined minima at or very close to 1.0 for all cases except uqé

® This is an improvement over slide 16 where some quads do not have well defined minima
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Overview of the CEBAF Injector
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A Smart Alarm System for the CEBAF Injector

* Alarm systems typically alert operators when there is a

problem with the beam

* Often does not provide much information on what caused the

alarm

* Diagnosing the problems is time consuming for operators

* Use machine learning to automate the root-cause-

analysis effort

* Autoencoders quantify similarities or differences between

machine states

* Inverse models use actual measurements to predict settings
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A Smart Alarm System for the CEBAF Injector
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A Smart Alarm System for the CEBAF Injector

* RMS error of the predicted settings by parameter for the machine study (left) and the nominal

setup (right).

* The difference is indicative of the model being able to detect variations in the machine state.

* Thresholds for anomaly detection are established based on performance on the nominal setup
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A Smart Alarm System for the CEBAF Injector
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A Smart Alarm System for the CEBAF Injector

o Left:T-SNE was used to reduce

the dataset dimensionality

* Operational data is shown in
green and the study data in blue

* The model correctly flagged the
study data as anomalous

 The T-SNE reduction of the data
also provides a strong indication
that these two datasets are
distinct in nature
* Right: Comparison with
conventional threshold-based
alarming.
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Conclusions

* Smart alarm system at JLab

* Algorithm development nearing completion, published (https://iopscience.iop.org/article/10.1088/2632-
2153/acb98d/meta)

* Many thanks to the efforts of Chris Tennant and the JLab team

* Beamline control algorithms at BNL

* Algorithm development nearing completion, publication in preparation.
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Disclaimer

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.
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