

Machine Learning & Data Processing for Beam Profile Measurements

Javier Martínez Samblas, Manuel Gonzalez-Berges

Contributions by: Glenn Anta, Clara Marie Fleisig, Verena Kain, Mark Mclean, Hampus Sandberg, James Storey

07/10/2023

Outline

- **1. Introduction**
- 2. Noise Removal
- 3. Extra Data Processing
- 4. Preliminary Results
- 5. Conclusions & Future Work

1.Introduction

BGI: Beam Gas Ionization

Motivation: "To obtain non-invasive beam profile measurements."

Source: Commissioning of Timepix3 Based Beam Gas Ionisation Profile Monitors for the CERN Proton Synchrotron (Swann Levasseur)

The Detector

Timepix3

256x256 px 14x14 mm

Source: Measuring the Beam Profile by Counting Ionization Electrons (Hampus Sandberg)

Javier Martínez Samblas, Manuel Gonzalez-Berges | Machine Learning & Data Processing for Beam Profile Measurements | 07.10.2023

Beam Profile

CERN

Acquisition Over Time

Acquisitions can actually be considered as a sequence of frames (video) that can be merged based on some predefined integration time \cong

All Events Video Sequence

Source: https://bgi.web.cern.ch/

2. Noise Removal

Previous work: DBSCAN Clustering

Expert knowledge: "Beam losses refer to clusters of points that are sufficiently close together at a given time; everything else is signal (**ionization electrons**)."

SPATIAL CLUSTERING

It works but it is too slow...

It takes from **20 to 100 seconds** to analyze **each acquisition** (even with multiprocessing on several CPUs)

How can ML help us?

- Unsupervised learning. Trying to directly detect the noise without labeled data.
- **Supervised learning**. Using denoised data as our ground truth.
- Self-supervised learning. Creating noisy synthetic images from clean data and train in a supervised way.
- Algorithms:
 - Traditional methods (e.g. median filtering, wavelet denoising, etc.)
 - Autoencoders (our selection / baseline)
 - Generative Adversarial Networks (GANs)
 - Vision Transformers (ViT)

What is an autoencoder?

Source: Difference between AutoEncoder (AE) and Variational AutoEncoder (VAE) (Aqee Anwar) (https://towardsdatascience.com/)

Proposal: using autoencoders to speed up the process

Assumption: "DBSCAN works. Let's train a neural network in a supervised way to learn the mapping from the noisy to the denoised DBSCAN outputs."

Source: U-Net: Convolutional Networks for Biomedical Image Segmentation

Training Stage

DENOISE USING DBSCAN (SLOW)

Inference

Dataset Details

- We have analyzed about 1500 image pairs from BGIH 2021 and 2022 data.
- Not all of the data is actually valid (e.g. images with detectors OFF, not enough beam or recorded events, bad fits, etc.)
- Trained one model on **high integration** time images (~100 imgs)
- Trained another on low integration time images (~350 imgs)
- 75% training set and 25% validation set
- Preprocessing: Min-Max Norm and Log Transformation

Training Configuration

Our preliminary study shows that it is actually possible to learn the mapping 🐵

- batch size = 1-8 imgs
- Ir = 1e-6 to 1e-8 (Ir_scheduler)
- weight decay = 1e-8
- optimizer = AdamW
- Loss = Binary Cross Entropy (BCE) + Dice Loss

Sum Loss = BCE + Dice Loss

Binary Cross Entropy for pixel-wise accuracy

$$BCE = -\frac{1}{N} \sum_{i=0}^{N} y_i \cdot log(\hat{y}_i) + (1 - y_i) \cdot log(1 - \hat{y}_i)$$

DL = (1 - Dice Coefficient) for contextual spatial features

3. Extra Data Processing

Extra #1: Time Over Threshold (ToT) Filtering

Assumption: "Events with ToT > 20 are likely to be beam loss."

After DBSCAN

After DBSCAN + ToT Filtering

Extra #2: RF Shield Correction

Filter out honeycomb and manually annotated noisy pixels 56

Extra #2: RF Shield Correction

We can also interpolate the honeycomb using TELEA¹ inpainting!

1. Telea, Alexandru (2004). An Image Inpainting Technique Based on the Fast Marching Method. Journal of Graphics Tools. 9.10.1080/10867651.2004.10487596.

Slide courtesy of Glenn Anta

Extra #3: Moving Average Thresholding

Improve the final beam profile by detecting noisy-pixel outliers in a very safe way 🗑

4. Results

5. Conclusions & Future Work

Good news

- DBSCAN is not viable for real-time operational purposes but it is robust and can be used during post-processing and for training
- U-Net has been proven to effectively learn DBSCAN's mapping ✓
- Standard signal processing techniques (e.g. Mov-Avg Confidence Intervals) can vastly improve the profiles in a safe way
- ToT filtering and honeycomb adjustments are also safe and fast (but it requires manual pixel mask adjustments)
- We have now scripts to easily generate, filter and analyze our image dataset from the raw files (it will be essential for future training and test) ✓

Known limitations

- We need more data and more updated data (right now we only trained on BGIH files from 2021 and 2022)
- We need to test the models in actual test data taken from different days and under different conditions or beam types
- In any case, we need some consensus on integration times, as images differ a lot depending on how many milliseconds we integrate Images
- We are ruling out **time information** so profiles will not always be perfect 😔
- The ultimate goal would be to use the whole video to obtain the beam profile (e.g. using Transformers)

Thanks!

DBSCAN is not perfect: it sometimes fails but it is very rare...

Hardware and GPU Information

The model was trained using CERN's infrastructure: https://ml.cern.ch

	T4	P4	M60	M10
GPUs / Board	1	1	2	4
(Architecture)	(Turing)	(Pascal)	(Maxwell)	(Maxwell)
CUDA Cores	2,560	2,560	4,096 (2,048 per GPU)	2,560 (640 per GPU)
Memory Size	16 GB GDDR6	8 GB GDDR5	16 GB GDDR5 (8 GB per GPU)	32 GB GDDR5 (8 GB per GPU)
vGPU Profiles	1 GB, 2 GB, 4 GB, 8 GB, 16 GB	1 GB, 2 GB, 4 GB, 8 GB	0.5 GB, 1 GB, 2 GB, 4 GB, 8 GB	0.5 GB, 1 GB, 2 GB, 4 GB, 8 GB
Form Factor	PCIe 3.0 Single Slot (rack servers)	PCIe 3.0 Single Slot (rack servers)	PCIe 3.0 Dual Slot (rack servers)	PCIe 3.0 Dual Slot (rack servers)
Power	70W	75W	300W (225W opt)	225W
Thermal	passive	passive	active/passive	passive
PERFORMANCE Optimized				DENSITY Optimized

NVIDIA TESLA T4 - THE MOST VERSATILE GPU

Source: NVIDIA Tesla T4 Powers Next Generation of Virtual Workstations (NVIDIA Blog)

CERN

