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LHC PROVIDES A COLLIMATED BEAM OF TEV ENERGY NEUTRINOS IN THE FAR FORWARD DIRECTION
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ABSTRACT

Extracted beams and fixed target facilities at future colliders (the SSC
and the LHC) may be (respectively) impaired by economic and "ecological"
considerations. Neutrino and muon physics in the multi-TeV range would.
appear not to be an option for these machines. We partially reverse this
conclusion by estimating the characteristics of the “"prompt" vy, Ve, Vt
and y beams necessarily produced (for free) at the pp or pp intersections.
The neutrino beams from a high luminosity (pp) collider are not much less
intense than the neutrino beam from the collider's dump, but require no
muon shielding. The muon beams from the same in;ersecyions are intense
and energetic enough to study up and uN interactions with qons1derab1e
statistics and a Q*-coverage well beyond the presently available one.

The physics program allowed by these lepton beams is a strong advocate
of machines with the highest possible luminosity: pp (not pp) colliders.

" neutrino DIS |
| atTeVscale |

This provides the means to study interesting open issues
in QCD — of relevance to neutrino telescopes; to study
forward production of light hadrons — of relevance to
cosmic ray air shower arrays; and enables searches for
long-lived particles arising in BSM physics (axions, dark
photons, heavy neutral leptons, milli-charged particles,
scalar dark matter etc) — of relevance to various dark

nuclear PDFs | matter experiments (both direct and indirect searches).
( shadowing | [ EMCeffect ] (FPF collab., Phys.Rep. 968:1,2022, J.Phys.G50:030501,2023)
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Synergy with neutrino telescopes:

Antares/KM3NeT, Baikal/GVD, IceCube/Gen2, ... P-One, Trident,
... ANITA, PUEO, GRAND, Trinity, ... ARIANNA, ARA, RNO-G




NEUTRINO TELESCOPES LIKE ICECUBE DETECT VERY HIGH ENERGY NEUTRINOS — TO INTERPRET THE EVENT RATE IN
TERMS OF THE INCIDENT FLUX, WE MUST KNOW THE DEEP INELASTIC SCATTERING #-SECN (USING KNOWN PDFSs)

v-N deep inelastic scattering is well-understood in the Standard Model
B, GLME ( M? )
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At leading order (LO): F;, =0, Fy =xz(uy, +d, +2s+2b+ 4 +d+ 2¢),
zF3 = z(uy +dy + 25 +2b— 4 — d — 2¢) = z(uy + dy + 25 + 2b — 2¢)

Can calculate numerically at Next-to-Leading-Order (NLO) ... no significant further change at NNLO

For UHE neutrinos, perform DGLAP evolution of PDFs to low-x (heavy flavour thresholds, nuclear targets, ...)



AS THE NEUTRINO ENERGY INCREASES, LOWER VALUES OF X ARE BEING PROBED

1011
1010
10°
108
107

10°

Q* [GeV?]

10°
10*
103
10?

10

1071910721078 1077 107° 1051074 103 1072 10!

Cp contour containing fraction p
of total v CC cross section

at s = 10 GeV? (HERAPDF1.5)

0d, 0.3 07 09
0.5 L= =

PO T T T

X

1011
1010
10°
108
107

10°

Q* [GeV?]

10°
10*
103
10?

10

1071910721078 1077 107° 1051074 103 1072 10!

P contour containing fraction p
of total vCC cross section

at s = 10'! GeV? (HERAPDF1.5)

04> 030507 09

PO T O T T

X

To determine the DIS cross-section accurately it is thus essential to have PDF measurements down to as low
Bjorken-x as is possible (NB: for E,, over ~103 TeV we have to evolve these further (using the DGLAP/BFKL formalism)

Mertsch, Cooper-Sarkar, S.S., JHEP 08:042,2011


https://doi.org/10.1007/JHEP08(2011)042
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The H1 & ZEUS experiments at HERA were the first to measure DIS at high Q> and low Bjorken-x — an unexpected

finding was the steep rise of the gluon PDF at low x which is particularly relevant for HE neutrino interactions
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Subsequently data from the LHC (W, Z, ttbar, jets ...) have led to more accurate PDFs and some new findings
(low-x strange sea less suppressed than believed earlier, a hint of intrinsic charm ...)



Neutrino telescopes like IceCube use NuGelN _HERAPDF1.5 NLO Isoscalar Target

which incorporates our NLO calculation using !
. ," s '
HERAPDF1.5, incl. effect of heavy quarks on DGLAP
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OUR PREDICTED UHE V-N CROSS-SECTION HAS BEEN VERIFIED USING V ABSORPTION IN THE EARTH
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argument to perform tomography of the Earth, Donnini et al, Nature Phys.15:37,2019)

IceCube Collaboration, Nature 551:596,2017

However the me¢asurement uncertainty is large (~30%) and the Earth absorption method works only above ~10 TeV

The FPF is well suited to bridge the gap down to laboratory measurements

(upto ~300 GeV) at fixed-target experiments


https://doi.org/10.1038/s41567-018-0319-1
https://doi.org/10.1038/nature24459

Barger et al, PR D95:093002,2017

Gauld, PR D100:091301,2019

AS EXPERIMENTAL PRECISION IMPROVES, FURTHER EFFECTS NEED TO BE CONSIDERED

* Heavy quark effects on DGLAP evolution:

v [~
b
W+
JF/
t
b f

The exact way the b > t contribution turns on = ~10% syst. uncertainty ..

* Nuclear binding effects:
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There is no experimental evidence for ‘shadowing’ but theory

suggests it may depress the cross-section by ~5-10% at UHE

* Other contributions:
Glashow resonance @ 6.3 PeV
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THE STATE-OF-THE ART Is NNSFv—- WHICH PROVIDES STRUCTURE FUNCTIONS FROM GEV TO MULTI-EEV ENERGIES
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This is being used to predict inclusive cross sections for a range of energies and target nuclei relevant for the FPF


https://nnpdf.github.io/nnusf/index.html
https://doi.org/10.1007/JHEP05%282023%29149

AS THE GLUON DENSITY RISES AT LOW X, A NEW PHASE OF QCD — THE COLOUR GLASS CONDENSATE -
HAS BEEN POSTULATED TO EXIST (AND HAS SOME SUPPORT FROM RHIC AND ALICE DATA)

Y =In 1/xf

Saturation
InQL(Y)=AY

Dilute system

BFKL

DGLAP

-

In A2 In Q*

Qco

Would be interesting to explore using neutrino deep inelastic scattering ...
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Synergy with neutrino telescopes:

Antares/KM3NeT, Baikal/GVD, IceCube/Gen2, ... P-One, Trident,
... ANITA, PUEO, GRAND, Trinity, ... ARIANNA, ARA, RNO-G




NEUTRINO TELESCOPES LOOK FOR A COSMIC SIGNAL BURIED IN A HUGE BACKGROUND OF ATMOSPHERIC NEUTRINOS
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The ‘conventional flux’ is well understood as it is calibrated against many observations but uncertainties in charm
production make the prompt flux less so although it is the most important background for the astrophysical flux!
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The prompt flux is harder than the conventional flux, and was predicted to dominate the total flux at E > 10°-° GeV



The gquantity needed to determine charm production in cosmic ray air showers is:

Z _/xdE""’P(E') A do(pp —+ ccY; E', E)
A 6o(E) opa(E) dE

- The differential cross-section can be calculated in a variety of formalisms, e.g. the ‘colour dipole model’ of ERS
which is empirical (hard to estimate uncertainties)

However, perturbative QCD (with DGLAP evolution) can describe charm production data for the
entire kinematical region of interest, hence can calculate with NLO+PS MC event generators

Boosting from CM to the rest frame of the (atmospheric) fixed target:

Vs =T7[TeV] «— E,=26x10" [GeV]

We can thus predict the prompt neutrino flux at energies up to 107 GeV ... at these energies, charm
production is dominated by gluon fusion, hence sensitive to the behaviour of the gluon PDF at small-x

Gauld et al, JHEP 02:130,2016
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LHCb collab. Nucl.Phys.B871:1,2013
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RANGE OF PREDICTIONS NARROWED WITH INPUT FROM LHCREB DATA
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FASERv and SND@LHC will measure the prompt neutrinos in a more forward region (y > 7.2) than LHCb can access


https://doi.org/10.1007/JHEP11(2016)167

PARTON DISTRIBUTION FUNCTIONS & FORWARD CHARM PRODUCTION

> FLArE measurements of neutrino flux can probe
both very high-x and very low-x regions of colliding protons

> Gluon recombination (g9 — g) is expected to be relevante for z ~ 107
and would tame growth of gluon PDF in this region
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Courtesy: Luis Anchordoqui
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LIGHT HADRON PRODUCTION
(Dennis Soldin et al)

Svynergy with Cosmic Ray Air Shower arrays:

Pierre Auger Observatory, IceTop, KASCADE-GRANDE, NEVOD-DECOR ...



IS THE MUON DEFICIT IN SIMULATIONS WRT UHECR DATA DUE TO ENHANCED STRANGE PRODUCTION?
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https://doi.org/10.1016/j.jheap.2022.03.004

Courtesy: Luis Anchordoqui

MUON EXCESS IN UHE CcOSMIC RAY AIR SHOWERS CAN BE INVESTIGATED AT THE FPF
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Whether the muon
excess is simply due to
enhanced strangeness
production in the forward
direction can easily be
tested at the FPF ...
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BSM PHYSICS
(Sebastian Trojanowski et al)

Svynergy with neutrino telescopes & dark matter experiments




THE NEW PARTICLE LANDSCAPE
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> RATLAS and CMS detectors are designed to find new heavy particles which are produced almest at rest and decay isotropically
> New light particles are mainly produced along the beamiine and so new particles disappear through the holes that let the beams in

*
> We need a detector to cover the blind spots in the forward region

* Or do a beam dump experiment!

Courtesey: Luis Anchordoqui
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THE PORTAL FORMALISM
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Such searches were carried out ~40 years ago at CERN by the neutrino beam dump experiments at the SPS — | will

moments etc
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FULLY RECONSTRUCTED NEUTRINO INTERACTION EVENT IN BEBC
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Blast from the past II: Constraints on heavy neutral leptons
from the BEBC WA66 beam dump experiment

Ryan Barouki, Giacomo Marocco™ and Subir Sarkar

Rudolf Peierls Centre for Theoretical Physics, University of Oxford,
Parks Road, Oxford OX1 3PU, United Kingdom

We revisit the search for heavy neutral leptons with the Big European Bubble
Chamber in the 1982 proton beam dump experiment at CERN, focussing on those
heavier than the kaon and mixing only with the tau neutrino, as these are far less
constrained than their counterparts with smaller mass or other mixings. Recasting the
previous search in terms of this model and including additional production and decay
channels yields the strongest bounds to date, up to the tau mass. This applies also to
our updated bounds on the mixing of heavy neutral leptons with the electron neutrino.
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Blast from the past: Constraints on the dark sector
from the BEBC WA66 beam dump experiment
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Rudolf Peierls Centre for Theoretical Physics, University of Oxford,
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We derive limits on millicharged dark states, as well as particles with electric or magnetic

dipole moments, from the number of observed forward electron scattering events at the
Big European Bubble Chamber in the 1982 CERN-WA-066 beam dump experiment. The
dark states are produced by the 400 GeV proton beam primarily through the decays
of mesons produced in the beam dump, and the lack of excess events places bounds
extending up to GeV masses. These improve on bounds from all other experiments, in
particular CHARM II.
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The reach will improve with FLArE & FORMOSA at the FPF [arXiv:2109.10905]
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The WA66 constraint on forward scattered electrons also translates into a competetive bound
on scattering of ~MeV-GeV scalar dark matter (Buonocore et a/, PR D102 (2020) 035006)
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Projected exclusion bounds for FASERv2 & FLArE-10 detectors @ HL-LHC with 3 ab~! integrated
luminosity. Existing constraints (grey) & projected reaches from other expts [arXiv:2107.00666]
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