BSM Physics Opportunities with LHC Neutrino Beams

Kevin J. Kelly, Texas A&M University FPF Theory Workshop, 17th Sept., 2023 kjkelly@tamu.edu

$$\begin{split} \mathbf{Scattering with New EF} \\ \mathcal{L}_{\text{WEFT}} \supset &- \frac{2V_{jk}}{v^2} \Big\{ [\mathbf{1} + \epsilon_L^{jk}]_{\alpha\beta} (\bar{u}^j \gamma^{\mu} P_L d^k) \\ &+ \frac{1}{2} [\epsilon_S^{jk}]_{\alpha\beta} (\bar{u}^j d^k) (\bar{\ell}_{\alpha} P_L \nu_{\beta}) - \frac{1}{2} \\ &+ \frac{1}{4} [\epsilon_T^{jk}]_{\alpha\beta} (\bar{u}^j \sigma^{\mu\nu} P_L d^k) (\bar{\ell}_{\alpha} \sigma_{\mu\nu} P_L d^k) \Big] \Big\}$$

New four-fermion operators induce (a) additional production of neutrinos from meson decays and (b) new contributions to scattering in detectors.

$$\begin{split} \tilde{P}^{S}_{\alpha\beta}(E_{\nu})_{L=0} &\simeq \delta_{\alpha\beta} + 2\sum_{X,j,k} p^{S,jk}_{XL,\alpha} [\epsilon^{jk}_{X}]_{\alpha\alpha} \delta_{\alpha\beta} + 2\sum_{j,k} d^{jk}_{LL,\alpha} [\epsilon^{jk}_{L}]_{\beta\beta} \delta_{\alpha\beta} \\ &+ \sum_{X,Y,j,k} \left[p^{S,jk}_{XY,\alpha} [\epsilon^{jk}_{X}]_{\alpha\beta} [\epsilon^{jk}_{Y}]_{\alpha\beta} + d^{jk}_{XY,\beta} [\epsilon^{jk}_{X}]_{\beta\alpha} [\epsilon^{jk}_{Y}]_{\beta\alpha} \right]. \end{split}$$

Effective probability (quadratic in Wilson coefficients) capturing these new-physics effects.

Falkowski et al, [2105.12136]

FT Operators

 $(\bar{\ell}_{\alpha}\gamma_{\mu}P_{L}\nu_{\beta}) + [\epsilon_{R}^{jk}]_{\alpha\beta}(\bar{u}^{j}\gamma^{\mu}P_{R}d^{k})(\bar{\ell}_{\alpha}\gamma_{\mu}P_{L}\nu_{\beta})$ $[\epsilon_P^{jk}]_{\alpha\beta}(\bar{u}^j\gamma_5 d^k)(\bar{\ell}_{\alpha}P_L\nu_{\beta})$

 $P_L \nu_\beta) + \text{h.c.} \}.$

Scattering with New EFT Operators

• Goal: utilize a precise measurement of event rate (and shape) to constrain Wilson coefficients, compared against orthogonal probes

See Falkowski et al, [2105.12136] for RH, scalar couplings, discussion of complementarity of these and other constraints.

Could neutrinos have sizable self-interactions?

Could neutrinos have sizable self-interactions?

Neutrinophilic Dark Matter at the FPF

New mediator (possibly connected to DM) can be emitted in neutrino scattering, leading to signatures with large missing transverse momentum.

Figure considering the DUNE beam/ near detector (lower beam energy), but same message persists.

Event Distributions in a FLArE-like Detector

Signal/Background Optimization

Signal/Background Optimization

 $m_{\phi} = 1 \text{ GeV}$ S/(S+B)

 E_{vis} [GeV

45% smearing $p_T [\text{GeV}]$

Sensitivity Reach at FLArE

smearing case, projectic

Kelly et al [2111.05868]

on panson with 4370 hadro ons for
$$\lambda_{\mu\tau}$$
 coupling.

Wrap-up

Many new-physics models predict modifications to neutrino rates at FPF.

- some both.
- exploit).

More exciting work to come!

Some modify the flux, some modify the cross section,

Can introduce novel kinematical signatures in many cases that the FPF detectors (depending on type) can

Backup Slides

Hadronic Energy Reconstruction Impact

 $m_{\phi} \; [\text{GeV}]$

100

Coupling to Tau Neutrinos

