QUIRKS AT THE FORWARD PHYSICS FACILITY

Jonathan Feng, UC Irvine

work in progress with Jinmian Li, Xufei Liao, Jian Ni, Junle Pei

FPF Theory Workshop, 18 September 2023

NEW FORCES AT THE FPF

- The SM contains many forces corresponding to gauge symmetries that are unbroken or broken in a variety of ways.
- There may also be new forces, motivated by hidden sectors, dark matter, experimental anomalies, etc., which may be unbroken or broken in a variety of ways, and it is important to investigate all of these at the FPF.

• SM

- Abelian, unbroken:
 Electromagnetism U(1)_{EM}
- Abelian, spontaneously broken: Hypercharge U(1)_Y
- Non-Abelian, spontaneously broken: Weak SU(2)
- Non-Abelian, dynamically broken: QCD SU(3)

• BSM

- Abelian, unbroken: millicharged particles (FORMOSA)
- Abelian, spontaneously broken: dark photon, B - L, $L_{\mu} - L_{\tau}$ gauge bosons (FASER2, FASERv2, AdvSND, FLArE)
- Non-Abelian, spontaneously broken: ?
- Non-Abelian, dynamically broken: quirks (FASER2, FLArE, and others?)

QUIRKS

- Quirks are matter particles that are charged under a hidden strong force ("hidden QCD"), where $m_{quirk} \gg \Lambda_{hidden}$ for every quirk (we will typically assume there is just one). Kang, Luty (2008)
- In the most phenomenologically-interesting case, quirks have weak-scale masses and also SM charges. They are then pair produced at the LHC like 4th generation leptons/quarks (or sleptons/squarks) with high p_T .
- However, unlike 4th generation leptons or quarks, quirks are stable. In addition, they cannot hadronize wrt hidden QCD, because $m_{\text{quirk}} \gg \Lambda_{\text{hidden}}$: quirks are too heavy to be pair produced to break the color string.

• Instead, quirk pairs are bound by the color string and oscillate around their COM with length scale $d_{\rm cm} \sim m_{\rm quirk} / \Lambda_{\rm hidden}^2$. The quirk—anti-quirk bound state generically has low p_T , so can travel down the beamline and pass through far-forward detectors.

QUIRKS

- Quirks are a generic possibility if there is a strong hidden force. They are an example of new ~TeV-scale physics that is preferentially produced along the beamline and completely inaccessible at fixed target experiments.
- The quirk trajectories are not easy to model (string force naturally modeled in quirk-quirk COM frame, quirk-matter interactions naturally modeled in lab frame), but this has been done in beautiful work by Li, Pei, Ran, Zhang (2021).

• Quirks lead to a variety of LHC signals, depending on Λ_{hidden} . Detailed simulation is very difficult (e.g., impossible in Geant4), but there is work in progress using machine learning to search for anomalous, non-helical tracks.

Khlopov (1981); Gupta, Quinn (1981); Babu, Gogoladze Kolda (2005); Strassler Zurek (2006); Burdman, Chacko, Goh, Harnik (2005); Kang, Luty (2008); Harnik, Wizansky (2008); Harnik, Kribs, Martin (2011); Charcko, Curtin, Verhaaren (2015); Farina, Low (2017); Knapen, Lou, Papucci, Setford (2017), Evans, Luty (2018); ...

QUIRK PRODUCTION

- Consider (vector-like) quirks and "squirks," *e_R*-type (uncolored) and *d_R*-type (colored). *d_R*-type quirks hadronize wrt to QCD, 30% of resulting hadrons have charge ±1, rest are neutral. No fractionally charged particles.
- Consider hidden SU(2) ($\sigma_{quirk} \propto N_{IC}$).

 $SU(N_{\rm IC}) \times SU_C(3) \times SU_L(2) \times U_Y(1)$

$$egin{aligned} \mathcal{E} &= (N_{
m IC}, 1, 1, -1)\,, \ \mathcal{D} &= (N_{
m IC}, 3, 1, -1/3)\,, \ ilde{\mathcal{E}} &= (N_{
m IC}, 1, 1, -1)\,, \ ilde{\mathcal{D}} &= (N_{
m IC}, 3, 1, -1/3)\,, \end{aligned}$$

• Consider m_{quirk} from 0.1 - 2 TeV. Despite ISR, FSR, many quirk pairs travel in the far-forward region: ~1-5% with θ < 0.005 (6 10⁻⁶ of solid angle).

QUIRK PROPAGATION

• The quirk oscillation length is $d_{\rm cm} \sim 2 \ {\rm cm} \ (\gamma - 1) \left(\frac{m_Q}{100 \ {\rm GeV}}\right) \left(\frac{{\rm keV}}{\Lambda}\right)^2$

where γ is the Lorentz boost factor of the quirks when produced.

- Consider Λ from 10 eV to MeV. For $m_{\text{quirk}} \sim \text{TeV}$,
 - $\Lambda \sim 10 \text{ eV}$: $d_{cm} \sim 50 \text{ m}$, quirks propagate almost independently, look like HSCPs
 - $\Lambda \sim 100 \text{ eV} 10 \text{ keV}$: $d_{cm} \sim 50 \text{ cm} 0.5 \text{ mm}$, quirks are bound together and can both go through FASER2
 - $\Lambda \sim 100 \text{ keV} \text{MeV:} \ d_{cm} \sim 500 \text{ nm} 5 \text{ nm}, \text{ quirks oscillate rapidly, radiate hidden}$ glueballs and photons and can annihilate before reaching the FPF Evans, Luty (2018)

• Note: for low Λ , the tracks are essentially straight within the detector.

SLOW QUIRKS

- What is the best way to search for quirks? Quirks with electric charge appear in far-forward detectors as heavy muons, but they come in pairs and can have velocities well below c.
- Velocity distributions depend strongly on m, insensitive to Λ and quirk type.

- Possible signals:
 - Ionization: high dE/dx (v < 0.7).
 - Arrival time: quirks arrive out of time with bunch crossings. FPF is so far from ATLAS that even a particle with v < 0.998 arrives 3 ns late. Requires bunch crossing information.
 - Time difference: measure the time difference between when a particle passes through the front and back scintillators. Self-contained: independent of bunch crossing time.

QUIRK SIGNALS FROM TIMING

- Arrival time: require 2 charged particles with p>100 GeV that pass through FASER2 at the same time, and both arrive outside [-3 ns, 3 ns] window.
- Time difference: require 2 charged particles with p>100 GeV that pass through FASER2 at the same time, and both have time difference between front and back scintillators that is > 2 ns delayed (20 m for FASER2) (background free based on measured muon flux, current FASER scintillator performance). Boyd, Petersen (2023)
- No sensitivity at Λ~ 10 eV (2 tracks too separated to both pass through FASER2), and no sensitivity at Λ ~ MeV (quirk pair annihilates before getting to FASER2). But significant sensitivity beyond ATLAS/CMS searches for intermediate Λ.

SUMMARY AND OUTLOOK

- Quirks are a generic possibility if there is a strong hidden force. They are an example of new ~TeV-scale physics that is preferentially produced along the beamline and completely inaccessible at fixed target experiments.
- The FPF appears to have sensitivity to quirk parameter space beyond competing constraints for both uncolored and colored quirks at the TeV scale.
- Analyzed for FASER2, but would also be interesting to consider FLArE and other FPF detectors, either proposed or new.

