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• Why a new package?
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• Limitations & conclusion



Why one more tool?
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The search for feebly-interacting particles
A plethora of proposed experiments...
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The search for feebly-interacting particles
... with one problem
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Many discrepancies!

Exclusive description of production

Inclusive description of production

Different formula for decay width

Simplified acceptance

* the specific experiments 
don’t matter to the discussion

(+ for ALPs: different coupling conventions)



SensCalc
One Mathematica package to rule them all

• Unified description of the New Physics phenomenology 

• Explicit control over all the inputs  
(SM particle spectra, experiment geometry, selection cuts, ...) 

• Public, hackable code based on a semi-analytical method



SensCalc
One Mathematica package to rule them all

Implemented models 

• Dark photons


• Dark scalars (mixing & quartic coupling)


• HNLs (with arbitrary mixing pattern)


• ALPs (coupled to gluons, photons, fermions)


• Anomaly-free U(1) mediators

Implemented facilities & experiments 

• SPS: NA62/HIKE (dump), SHiP, SHADOWS, 
CHARM, BEBC


• Fermilab: DUNE, DUNE-prism, DarkQuest


• LHC: FASER/FASER2/FASERν/FASERν2/
FASER2-FPF, SND@LHC/advSND, FACET, 
MATHUSLA, CODEX-b, ANUBIS (shaft or ceiling)


• FCC-hh: equivalents of the LHC experiments 
+ DELIGHT, FOREHUNT



Semi-analytic estimate
Experimental setup & naive estimate




•  = number of produced FIPs


•  = geometric acceptance of the FIP


•  = mean probability of the FIP 
decaying within the fiducial volume


•  = acceptance of the FIP decay 
products

Nev ∼ Nprod ⋅ ϵFIP ⋅ ⟨Pdecay⟩ ⋅ ϵdecay

Nprod

ϵFIP

⟨Pdecay⟩

ϵdecay



Semi-analytic estimate
Precise estimate




•  = total number of produced FIPs & their distribution in  
(for a given production mechanism (i))


•  = azimuthal acceptance for the FIP to decay within the decay volume


•  = differential decay probability for the FIP


•  = acceptance of the FIP decay products


•  = reconstruction efficiency (optional: must be computed externally)

Nev = ∑
i

N(i)
prod∫ dEdθdz f (i)(θ, E) ⋅ ϵaz(θ, z) ⋅

dPdec
dz

⋅ ϵdec(m, θ, E, z) ⋅ ϵrec

N(i)
prod, f (i)(θ, E) θ − E

ϵaz

dPdec
dz

=
1

cos(θ)cτ γ2 − 1
exp [−

z

(cos(θ)cτ γ2 − 1) ]
ϵdec

ϵrec



Semi-analytic estimate
Integrate using Monte-Carlo

Nev = ∑
i

N(i)
prod∫ dEdθdz f (i)(θ, E) ⋅ ϵaz(θ, z) ⋅

dPdec
dz

⋅ ϵdec(m, θ, E, z) ⋅ ϵrec

The integral can be broken down into conditional 
distributions and computed using Monte-Carlo integration

Semi-analytical  Monte-Carlo equivalence⟷

SensCalc 
(main package)

SensMC 
(for validation, limited functionality)



Semi-analytical estimate
Validation against SensMC (Monte-Carlo)

Good agreement at the  level despite different code base and inputs∼ 10 − 20 %

* single-event sensitivity at 
90% CL used for validation 
(i.e. zero background)



Validation against other packages
ALPINIST — BC9 (ALPs coupled to photons) — SHiP

Discrepancy likely caused by 
slightly different geometries

✔



Validation against other packages
FairShip — BC1 (dark photons) & BC6 (HNLs) — SHiP @ ECN4

Good agreement despite slightly different phenomenology

Excluded

[2011.05115]
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Validation against other packages
And more...

• FORESEE


• The LHCb simulation framework ✔



Running SensCalc

• A set of Mathematica notebooks for computing the signal or sensitivity


• Input: experimental setup (geometry, cuts) and distribution of parent particles


• Output: tabulated number of events as a function of the mass and coupling 
(may be converted into exclusion or discovery sensitivities)

[doi.org/10.5281/zenodo.7957784]

https://doi.org/10.5281/zenodo.7957784


Running SensCalc
Modular structure

• Acceptances.nb: specify the geometry & acceptance criteria 


• FIP distribution.nb: specify the facility & FIP  FIP distribution


• FIP sensitivity.nb: compute the tabulated number of events & sensitivity


• Plots.nb: produce the sensitivity plots

→ ϵaz, ϵdec

→



Running SensCalc
Models & experiment selection

• Numerous models & experiments are already 
implemented and can be easily selected through 
dialog windows


• New models or geometries can be implemented 
similarly to the existing ones



Acceptances.nb

The user specifies:


• the experimental setup (geometry, magnetic field, presence of an EM calorimeter)


• the selection cuts ( , , impact parameter, ...)E pT

Decay volume

Detector
SHiP

ANUBIS 
(ceiling)

Interaction point
Target



Acceptances.nb

The notebook produces the grid:


, , , , , 


FIP trajectories that point:


• (green) towards the end of the detector


• (cyan) elsewhere

m θ E z ϕinside decay vol. ϵaz(θ, z)

MATHUSLA



Acceptances.nb

The notebook outputs  by averaging





over all decay channels and azimuthal angles .


This is done by:


• evaluating the decay phase space using either analytic matrix elements or a phase 
space pre-generated by MadGraph5_aMC@NLO and Pythia8 (for decays involving jets)


• checking whether the decay products point towards the end of the detector and satisfy 
the kinematic cuts

ϵdec(m, θ, E, z)

ϵdec(m, θ, E, z, ϕinside decay volume, decay channel)

ϕ



Case study: ALP with fermion couplings

• The widely adopted phenomenology [1901.09966] misses hadronic ALP decays and 
various production channels


• All sensitivities of future experiments & existing bounds have to be recomputed! 
[F. Kahlhoefer, G.D.V. Garcia, M. Ovchynnikov, A. Zaporozhchenko, in preparation]
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Case study: ALP with fermion couplings

Compared to the PBC description:


• Large ALP masses have become less accessible


• Fermilab experiments feature no significant production from  
Instead, the dominant production mechanism is the mixing with light mesons

Bs

Cf. Maksym’s upcoming talk at Light Dark World
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Limitations

• The user is responsible for passing the number of signal events 
corresponding to the desired significance level 

 2.3 for 90% CL, 3 for 95% CL assuming zero background


• SensCalc cannot estimate the expected number of background events


• SensCalc only computes the total number of accepted events 
It does not produce detailed event records with the final states 

 cannot use binned likelihoods, , etc...

→

→ CLs



When to use SensCalc?

• Validate your signal model


• Estimate the sensitivity in a zero-
background setting or in a counting 
experiment (single background bin)


• Consistently compare the 
sensitivities of multiple experiments


• Compute an optimistic upper bound 
on your sensitivity

• Produce detailed event records 
(e.g. to pass to the full simulation)


• Estimate the sensitivity in the 
background-dominated regime when 
the shapes of the signal/bkg. matter 
(e.g. peak searches)

✔ ❌



Conclusion
• Summary plots can give a false illusion of consistency and order


• But computing sensitivities is a complicated, messy process:


• Different phenomenologies and conventions for couplings


• More-or-less precise signal acceptances and background estimations


• SensCalc helps bring some consistency back


• Validate your signal model


• Compare experiments under the same assumptions


• Regularly updated (new experiments, new ALP phenomenology, etc...)


