Benchmarking Proton Bremsstrahlung for Dark Sector Production

University of Victoria

Saeid Foroughi-Abari

FPF Theory Workshop September 18th, 2023

with Adam Ritz, 2108.05900 and to appear

Proton Bremsstrahlung

- Primary production channel in the forward direction for intermediate mass range 0.5 - 1.5 GeV at the proton beam facilities [deNiverville, Pospelov, Ritz '16]
- Important regime near vectors $(\rho, \omega, ...)$, and scalar $(f_0, ...)$ meson resonances

• Equivalent Particle Approx. or F.W.W.: a well-known approach in QED for relativistic collinear scattering & radiation

[Kim, Tsai '73; Gribov & Lipatov '72; Baier, Fadin & Khoze '73 Altarelli & Parisi '77; Bjorken, Essig et al '09 ...]

Elastic Scattering via Pomeron Exchange

- Donnachie & Landshoff (DL) model [DL '82, 84, 11, 13]
- Single pomeron exchange fits data well for low t

$$\frac{d\sigma^{\rm el}}{dt} \simeq \frac{1}{4\pi} (Y_{\mathbb{P}}F_1(t))^4 |G(s,t)|^2$$

• Pomeron <u>Trajectory</u> contributes a power $s^{\alpha(t)-1}$ to the scattering amplitude

 $G_{\mathbb{P}}(s,t) = (s\alpha'_{\mathbb{P}})^{\alpha_{\mathbb{P}}(t)-1}, \quad \Gamma^{\mu}(t) = Y_{\mathbb{P}}F_1(t)\gamma^{\mu}$

$$\alpha_{\mathbb{P}}(t) \approx 1.08 + 0.25t$$

Radiation in Quasi-Elastic scattering

• Modeling forward pp scattering with Pomeron

Soft Photon Production

• Contrast the radiation in quasi-elastic processes involving the Pomeron with the soft photon approximation (SPA) for SM photon production

Radiation in Diffractive Processes

• Non-Diffractive processes constitute up to 60% of σ_{tot}

• The dominant contribution comes from ISR in non-single diffractive scattering.

Non-Single Diffractive

Production via ISR

• "Equivalent proton" or <u>Quasi-Real Approx.</u>

Collinear radiation with low p_T intermediate p' near on-shell [Khoze, Fadin] [Altarelli, Parisi]

$$\frac{p_T^2}{4z(1-z)^2 p_p^2} \ll 1$$

• The cross section divides into a **splitting probability** and the cross section of the subprocess involving the p' with the reduced energy:

$$d\sigma^{pp_t \to Df}(s) \approx d\mathcal{P}_{p \to p'D} \times \sigma_{pp}^{\mathrm{NSD}}(s')$$

Production via ISR

- The dark vector is radiated with timelike momentum, thus can mix with hadronic resonances, while the intermediate proton is slightly off-shell, so the vertex is a transition form-factor
- <u>**Time-like**</u> nucleon form factor:
 - Mixing with meson resonances

-4

-2

[Faessler et al '09] [Adamuscin et al '16]

 ρ/ω

2 t [GeV²]

Revisiting Proton Bremsstrahlung

Red band from varying transition form-factor scale $\Lambda \sim m_p$ from 1 to 2 GeV

Saeid Foroughi-Abari (Carleton U.)

Revisiting Proton Bremsstrahlung

10

Revisiting Proton Bremsstrahlung

Impact on Sensitivity

Benchmarks - ρ production

• Compare these mechanisms for inclusive rho production with data

Other Benchmarks

• Compare these mechanisms for inclusive photon production with data from LHCf and for dimuon production with data from COMPASS

• What is the kinematic regime in which coherent ISR transit to partonic-level radiation? Insights form future measurements of PDFs at small x.

Back-up Slides

Overview

[Pospelov, Ritz, Voloshin '07]

• <u>Visible decays</u> of dark photon

Vector Portal – Status Today

 $\pi^{\pm,0}, \eta. K^{\pm}$ Decay Proton Bremmstrahlung Drell-Yan

Modeling forward pp scattering

- Regge Theory: [Regge; Chew, Frautschi '61]
- Trajectory $\alpha(t)$ contributes a power
- $s^{\alpha(t)-1}$ to the scattering amplitude

140

Modeling forward pp scattering

- Pomeron Trajectory: [Gribov '62]
- Reggeons are not enough! Need to include exchange of another object with trajectory

Elastic Scattering via Pomeron Exchange

• Donnachie & Landshoff (DL) model [D&L '82, '84, '11, '13]

Photon vs Fermion Pole Approximation

Photon Pole Approx.		Fermion Pole Approx.			
Equiv. Photon Approx. (FWW) in QE	Improved Weizsäcker-Williams Method and Its Application to Lepton and W-Boson Pair Production* Kwang Je Kim and Yung-Su Tsai Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305 (Received 30 April 1973) A Weizsäcker-Williams method is derived which handles the elastic and inelastic target form factors properly. The method is applied to calculate energy-angle distributions of photoproduced lepton pairs:		ASYMPTOTIC I G. ALTARELLI Laboratoire de Phy G. PARISI ***	FREEDOM IN PARTON LANGUAGE * vsique Théorique de l'Ecole Normale Supérieure **, Paris, France	Splitting Function Using OFPT
Electron brem. in e-beam dum	New Fixed-Target Experiments to Search for Dark Gauge James D. Bjorken, ¹ Rouven Essig, ¹ Philip Schuster, ¹ and Natalia Tor ¹ Theory Group, SLAC National Accelerator Laboratory, Menlo Park, CA 94 ² Theory Group, Stanford University, Stanford, CA 94305 (Dated: June 3, 2009) Fixed-target experiments are ideally suited for discovering new MeV–GeV mass U(1) g	Forces	Received 12 April	QUASI-REAL ELECTRON METHOD iii IN HIGH ENERGY QUANTUM ELECTRODYNAMICS V.N. BAIER and V.S. FADIN Institute of Nuclear Physics, Novosibirsk, 630090 V.A. KHOZE Institute of Nuclear Physics, Leningrad. Received 6 July 1973 Abstract: An electron pole approximation is presented, which can be used to calculate cross	
Dark Photons via proton Brem.	through their kinetic mixing with the photon. In this paper, we identify the production New exclusion limits on dark gauge forces from proton Bremsstrahlung in beam-dump data Johannes Blümlein ^a ,*, Jürgen Brunner ^b ^a Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen, Germany ^b CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France A R T I C L E I N F O Article history: Received in revised form 9 February 2014	and decay	Pheno Iryna Boia Volodymy ¹ Discovery 2100, Coj ABSTRACT scalar parti particular, and show t comparing direct prod	sections in high energy quantum electrodynamics. A general der Domenology of GeV-scale scalar porta arska, ¹ Kyrylo Bondarenko, ² Alexey Boyarsky, ² ar Gorkavenko, ³ Maksym Ovchynnikov, ² Anastasia Sokolenko ⁴ <i>g Center, Niels Bohr Institute, Copenhagen University, Blegdamsvej 1</i> <i>penhagen, Denmark</i> T: We review and revise the phenomenology of the scalar portal – icle with the mass in GeV range that mixes with the Higgs boson we consider production channels $B \rightarrow SK_1(1270)$ and $B \rightarrow SK_1$ hat their contribution is significant. We extend the previous analy the production of scalars from decays of mesons, of the Higgs boson fuction via proton bremsstrahlung, deep inelastic scattering and co	<i>ivation is</i> given and some ap- n) collisions at large n electrons at large <i>Scalars via proton Brem.</i> a new n. In (700) sis by ns and 21

Quasi-Real (Fermion pole) Approximation

• Ultrarealistic fermion & radiation is highly collinear

$$k^{\mu} = (zp_p + \frac{p_T^2 + m_D^2}{2zp_p}, \mathbf{p}_T, zp_p) \qquad p_T, \, m_p \, (m_D) \ll E_p \, (E_k)$$

• Intermediate-fermion being near on-shell

$$\frac{i(\not p - \not k + m)}{(p-k)^2 - m^2} = \frac{i}{2E_{p'}} \sum_{r'} \left[\underbrace{\frac{u^{r'}(p-k)\bar{u}^{r'}(p-k)}_{(E_p - E_k - E_{p'})}}_{\ll} + \underbrace{\frac{v^{r'}(p-k)\bar{v}^{r'}(p-k)}_{(E_p - E_k + E_{p'})}}_{\ll} \right]$$

• With the cost of being non-covariant:

$$E_{p'} = \sqrt{(\vec{p} - \vec{k})^2 + m_p^2}$$

Quasi-Real (Fermion pole) Approximation

• Replace the p' propagator by the polarization sum for an <u>on-shell proton</u>

$$\mathcal{M}_{r}^{pp_{t}\to Df}(p,k,p_{j})\approx\sum_{r'}\mathcal{M}_{r'}^{pp_{t}\to f}(p',p_{j})\left(\frac{V_{r'r}^{D}}{2k\cdot p-m_{D}^{2}}\right)$$

Vertex Functions

 $V_{r'r,\lambda}^{V} = g_{V}\bar{u}^{r'}(p') \not\in_{\lambda}^{\star}(k)u^{r}(p)$ $V_{r'r}^{S} = g_{S}\bar{u}^{r'}(p')u^{r}(p)$

• Collinear emission does not change the proton <u>helicity</u>

Only the helicity conserving transitions contribute:

$$\frac{1}{2} \sum_{r(\lambda)} |\mathcal{M}_{r(\lambda)}^{pp_t \to Df}(p,k,p_j)|^2 = g_D^2 \left(\frac{z}{H}\right)^2 \mathcal{I}_D |\overline{\mathcal{M}_{r'}^{p_t \to f}}|^2$$

Radiation in Non-Single Diffractive Processes

• The dominant contribution comes from ISR in non-single diffractive scattering.

♦<u>Time-like</u> nucleon form factor:

- Mixing with meson resonances

[Faessler et al '09] [Adamuscin et al '16]

Transition (Off-Shell) form factor:

- Accounts for the suppression when the intermediate p' goes far off-shell

$$F_{pp^{\star}D}(p'^2) = \frac{\Lambda_p^4}{\Lambda_p^4 + (p'^2 - m_p^2)^2} \quad \text{[Fe}$$

[Feuster & Mosel '98]

Saeid Foroughi-Abari (University of Victoria)

Hadronic Generalization of the FWW Approx.

- Assumptions:
- Highly collinear radiation with [Kim, Tsai '73] small virtuality of pomeron momentum

$$t_{min} = -q_{min}^2 \approx -H^2/(2z(1-z)p_p)^2$$

• Cloud of <u>effective flux</u> of pomeron

$$\left(\frac{d\sigma_{pp \to ppD}^{\text{el}}}{dz dp_T^2} \right)_{\text{WW}} \cong \frac{\alpha_D}{16\pi^2} \frac{z(1-z)}{H^2} \times (A_D^{22}|_{t=t_{min}}) \chi_{\mathbb{P}}$$
$$\chi_{\mathbb{P}} \equiv \int_{t_{min}}^{t_{max}} dt \, (t - t_{min}) |\mathcal{A}_{el}(s, t)|^2 \quad Elastic \ Amplitude$$

Amplitude $\sim (s^{-\alpha' t})^2$ compare with $\frac{1}{t^2}$ for photon

Modified WW Approximation

• Modified version of both fermion-pole and photon-pole approaches [Blümlein & Brunner '13]

• The <u>splitting function</u> is convoluted with $\sigma_{tot}(s')$

$$w_V(z, p_T^2) = \frac{\alpha_{\epsilon}}{2\pi} |F_{1,V}^p(m_V^2)|^2 \frac{1}{H} \left[\frac{1 + (1 - z)^2}{z} - 2z(1 - z) \left(\frac{2m_p^2 + m_V^2}{H} - z^2 \frac{2m_p^4}{H^2} \right) + 2z(1 - z)(1 + (1 - z)^2) \frac{m_p^2 m_V^2}{H^2} + 2z(1 - z)^2 \frac{m_V^4}{H^2} \right]$$

 $p\left(p'\right)$

 $p + b \rightarrow p' + V$

 $V^{(k)}$

 $p\left(p\right)$

Benchmarks - ρ production

• Contrast these mechanisms for inclusive rho production with data from NA27

