Forward Neutrinos from Charm at Large Hadron Collider

QCD schemes: **Collinear factorisation** k_T factorisation **Recogne** σ x_2, k σ ಕ್ಷ್⁶⁹ಕಾಕಕಾ **Poorco** ൚൵൵൚

FIG. 1. Left: gluon-gluon fusion process for charm production in hadron-hadron collisions in the collinear factorization approach. f_1, f_2 are the integrated gluon distribution functions which depend on the longitudinal momentum fractions x_1, x_2 and the hard scale of the partonic sub-process. Right: the same process, illustrated for the case of forward production in the k_T -factorization. The gluon x_1 is treated on-shell, and the gluon x_2 is off-shell with transverse momentum k_T . $\hat{\sigma}$ is the partonic cross section which is on-shell (left panel) and takes into account off-shellness of one gluon (right panel).

- ✘ Typical fragmentation functions determined from LEP data
- Not especially tailored to high rapidity and low p_T calculations needed for FPF
- Ignores hadronisation involving beam remnants
- ✘ Pion fixed target experiments: WA82, E769, E791
	- ➔ Hadron momentum spectrum as hard as or even harder than the charm quark spectra

Fragmentation $c\overline{c} \rightarrow D$ -Mesons

 $D_H(z) \equiv$ Charm energy **fraction converted to hadron energy** $\boldsymbol{z} = \boldsymbol{p}_{\text{H}} / \boldsymbol{p}_{\text{c}}$

Pythia-inspired fragmentation

MC generators typically use more sophisticated hadronisation schemes. In particular, Pythia uses the Lund string model in which coloured objects are connected by a colour string containing the field lines of the strong force. This model can intuitively explain, for example, how a charm quark connected to a beam remnant valence quark will be pulled forward, potentially gaining energy.

- ✘ Typical fragmentation functions determined from LEP data
- Not especially tailored to high rapidity and low p_T calculations needed for FPF
- Ignores hadronisation involving beam remnants
- ✘ Pion fixed target experiments: WA82, E769, E791
	- ➔ Hadron momentum spectrum as hard as or even harder than the charm quark spectra

Fragmentation $c\overline{c} \rightarrow D$ -Mesons

 $D_H(z) \equiv$ Charm energy **fraction converted to hadron energy** $\mathbf{z} = \mathbf{p}_{\mathrm{H}} / \mathbf{p}_{\mathrm{c}}$

Pythia-inspired fragmentation

Charm production using Pythia produces a sampling of events, with each event characterized by the parton momentum p_c , the hadron momentum p_H , a hadron ID and an event weight w. The events in the sample follow a distribution $d^2\sigma_c^{\text{ps}}$ for the charm quarks and $d^2\sigma_H$ ^{P8} for the charm hadrons. Re-weighting procedure: adjust weights

 $w \rightarrow w \times \frac{d^2\sigma_c/(dp_{T,c}dy_c)}{d^2\sigma_c^{PS}/(dp_{T,c}dy_c)}$

General principles

- \blacksquare *D*⁰/ \bar{D}^0 , *D*±, *D*s data at 13 TeV from LHCb for reference
- Vary parameters pertinent to QCD scheme and compare against data
- Define χ^2 normalised to number of p_T bins
	- ➔ For forward predictions, important to ensure that fitting is not skewed by the availability of significantly more data at lower rapidities $2 \le y \le 3$ rather at, say, $y \ge 4$
- Determine $x^2/d.o.f$ for each set of parameters
- Obtain best-fit parameter set that minimises χ²/d.o.f, and parameter uncertainties

Collinear factorisation

- Scales $\{\mu_{F_1}, \mu_{F_2}\}$ as parameters
- *Introduce* Gaussian smearing on charm p_T
	- ➔ Inspired by Bai et al† , but modified to maintain energy conservation
	- \rightarrow Needed to match p_T -shape of computed d²σ vis-à-vis LHCb data
	- \rightarrow Finally, $\langle k_T \rangle$ = 1.5 GeV

Collinear factorisation

- Scales $\{\mu_{F_1}, \mu_{R}\}$ as parameters
- *Introduce* Gaussian smearing on charm p_T
	- ➔ Inspired by Bai et al† , but modified to maintain energy conservation
	- \rightarrow Needed to match p_T -shape of computed d²σ vis-à-vis LHCb data
	- \rightarrow Finally, $\langle k_T \rangle$ = 1.5 GeV

*k***T factorisation**

Determining parameters Fitting *d* ²σ to LHC data

- Different choices for $\mathcal{F}(x_2, \mathbf{k}_T)$
	- [→] Kutak-Sapeta (KS)† with nonlinear evolution (saturation)
	- [→] KS linear (w/o saturation)
	- [→] Ciafaloni-Colferai-Salam-Stasto (CCSS) linear‡
- Fit parameter: $k = 2.32 \pm 0.54$

[arxiv:1205.5035](http://arxiv.org/abs/1205.5035) \pm [arxiv:hep-ph/0307188](http://arxiv.org/abs/hep-ph/0307188)

†

*k***T factorisation**

- Different high- x gluon PDF
- Strong coupling variation
- Different scale choices for k_T -factorisation

Comparisons

Collinear vs k_T **factorisation @ 13 TeV**

Comparisons

Collinear vs k_T factorisation @ 7 TeV

Comparisons

Fragmentation schemes

4000 νe, 4000 νμ, and 120 ν^τ @FASERν during LHC Run 3

Neutrino fluxes Estimates for FASER*ν*

140,000 νe and νμ, and 6000 ν^τ @FLARE during HL-LHC

Neutrino fluxes Estimates for FLARE

Conclusions

Results

- \boxtimes *pp* → *c* \overline{c} : NLO-collinear and k_T factorisations
- \boxtimes Best-fits against LHCb 13 TeV data; associated uncertainties
- \boxtimes Pythia-based fragmentation scheme to better model high-y, low- p_T hadronisation
- \boxtimes Consistency check against 7 TeV LHCb data (not used for fits)
- ∇ Predictions for neutrino events at FASERν and, for the future, at FLARE

TODO

- □ k_T factorisation: Need NLO-level crosssections
	- Data-driven k -factor precludes proper comparisons
- □ Fragmentation schemes relevant for forward kinematics
- □ Comparisons involving different event generators

Outlook

- LHC-FPF driving us into an era of forward neutrino detection
- FASERv and SND@LHC currently operational
	- Proposed detector FLARE during HL-LHC
- \bullet v_{e} and v_{τ} channels provide potential for detecting neutrinos from charmed mesons
- With future collider data, and more theoretical work, potential for constraining QCD parameters related to charm
- Improved atmospheric *v* background estimates for high-energy neutrino telescopes thanks to better QCD