Investigating the reach of FPF via information geometry using multidifferential neutrino spectra

Toni Mäkelä, Felix Kling, Sebastian Trojanowski

FPF Theory Days September 18-19, 2023

Introduction

- At FPF6, introduced a tool for estimating the uncertainty of neutrino flux predictions, and to study how various models can be constrained based on Fisher information
 - Important step in understanding SM and the stream towards refining BSM searches: large differences between flux predictions, uncertainties are potentially large. Ensure physics effects are not covered by uncertainties!
- Various effects could affect the shape / magnitude of the neutrino spectra. Here we present results for:
 - Non-standard neutrino interactions via effective field theory
 - Enhanced strangeness
 - Consider possibilities for solving the cosmic ray muon excess puzzle using proposed and existing LHC experiments

Workflow

Predictions for hadron production at IP1

• Light mesons $\pi^{\pm}, \ K^{\pm}, \ K^0_L, \ K^0_S$

Charm hadrons

 $D_s^{\pm}, \Lambda_c^{\pm}$

 $D^{\pm}, D^0, \overline{D}^0,$

Decays into neutrinos MC samples of neutrinos (flavor, position, energy, momentum)

The results are based on using the predictions:

Light mesons (π, K)	Charm hadrons (D, Λ_c)
Name	Refs
SIBYLL 2.3d	SIBYLL 2.3d
EPOS-LHC	BKRS (UN O)
DPMJET 3.2019.1	BDGJKR (NLO)
QGSJET II-04	BKSS k_T
Pythia 8.2 (forward)	MS k_T

Many thanks to WG2 for their efforts!

 $N(\pi, K, c)x(N_{predictions}-1) = 12$ parameters λ

Workflow

NCBJ

The neutrino spectra

Enhanced strangeness

- What if there should be less pions, and kaons produced instead of them? (Enhanced strangeness hypothesis)
- Reweigh the counts of neutrinos associated with pions by $(1 f_s)$, and those from kaons by $(1 + F_s)$

Phenomenological factor, account for difference in $\pi I K$ production rates

- arXiv: 2202.03095 [hep-ph]: $f_s=0.5$ could explain the cosmic ray muon excess
 - Well distinguishable from the model and the broad prediction envelope

Non-standard interactions (NSI)

• Extend the SM Lagrangian by dimension-6 EFT terms (See doi:10.1007/JHEP10(2021)086)

Projected FPF limits improve the constraints significantly already after 10% of data taking. Full result will improve select operators' limits by an order of magnitude

Non-standard interactions (NSI)

NCBJ

Summary and outlook

- Presented a model and **public software package** for evaluating the impact of various physics effects on neutrino spectra at FPF
 - Possible to estimate ultimate precision achievable at FPF
 - Easily extendible to further processes, both SM and BSM
- Demonstrated physics cases indicate
 - Potential to solve the cosmic muon ray excess using LHC neutrinos
 - FPF's great constraining potential for non-standard interactions

Thanks for your attention!

The model calculation

• Construct a model *m* giving amount of neutrinos as a weighted average of N_g predictions *G* $N_{g-1} \rightarrow N_{g-1} \rightarrow N_{g-1} \rightarrow N_{g-1} \rightarrow N_{g-1} \rightarrow 1$ returns the mean,

$$m(\{\lambda_i\}_{i=1}^{N_g-1}) = \frac{1}{N_g} \left[G_0 \left(1 - \sum_{i=1}^{N_g-1} \lambda_i \right) + \sum_{i=1}^{N_g-1} G_i \left(1 + N_g \lambda_i - \sum_{j=1}^{N_g-1} \lambda_j \right) \right]$$

- N_g -1 parameters λ steer the result towards any prediction
- By The Cramér-Rao bound, the covariance matrix corresponding to the highest obtainable precision is obtained as the inverse of the Fisher information I_{ij}, approximated as the Hessian of the log likelihood ratio

$$-\frac{d^2\log r}{d\lambda^i d\lambda^j} \Delta\lambda^i \Delta\lambda^j = I_{ij} \Delta\lambda^i \Delta\lambda^j$$

$$r(\lambda^{\pi}, \lambda^{K}, \lambda^{c}) = \frac{L(\text{expected data}|\lambda^{\pi}, \lambda^{K}, \lambda^{c})}{L(\text{expected data}|\lambda^{\pi} = 0, \lambda^{K} = 0, \lambda^{c} = 0)}$$
18.9.2023

- Obtain info matrix
- Perform eigenvector analysis
 Uncertainties!
 - Poisson distributions;
 examine differences between any set of λs and the baseline

taken as the

baseline model in most cases.

but this choice is not imperative

Profiling A parallel projection of a generalized ellipsoid in parameter space

- Estimate ultimate constraints for a parameter in the model computation by profiling over the *n*-th parameter in the information matrix *I*: the *n*-th column (or row) of *I*, with the *n*-th entry removed, is taken as the vector **m** describing the mixing between the profiled parameter and the remainder
- A reduced information matrix I^{reduced} is attained by removing the *n*-th column and row from *I*. The profiled information matrix is $I^{\text{profiled}} = I^{\text{reduced}} \mathbf{m} \otimes \mathbf{m}/I_{nn}$
- The procedure is repeated to profile over multiple parameters, starting with the information matrix resulting from the previous step
- By profiling over all but one parameter, the information matrix reduces into a single entry *a*. The ultimate constraint for the remaining parameter is then $a^{-1/2}$

The neutrino spectra 1 vs 3 radial bins

Experiment comparison

