

EFT in the EWK and TOP sectors in CNS **Andrea Piccinelli (University of Notre Dame)**

6th General Meeting of the LHC EFT Working Group, 15-17 Nov. 2023, CERN

Outline

CMS D R

CMS Experiment at the LHC, CERN Data recorded: 2017-Oct-29 19:22:01.746752 GMT Run / Event / LS: 305840 / 1047490792 / 575

- Introduction
- Recent results in TOP sector
- Recent results in EWK sector
- Conclusions

ttH event

CMS Experiment at the LHC, CERN Data recorded: 2017-Sep-24 20:50:54.545792 GMT Run / Event / LS: 303832 / 1614954638 / 1543

WZjj event

TOP and EWK EFT at CMS

Andrea Piccinelli - 6th LHC EFT WG General Meeting (CERN)

 $\mathscr{L}_{SMEFT} = \mathscr{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{i} \frac{f_j}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots$

Big efforts to scan all possible sources of indirect new physics effects with the EFT approach in CMS

TOP and EWK EFT at CMS

$$\mathscr{C}_{SMEFT} = \mathscr{L}_{SM} + \left| \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} \right| + \left| \sum_{j} \frac{f_j}{\Lambda^4} \mathcal{O}_j^{(8)} \right| + \dots$$

Big efforts to scan all possible sources of indirect new physics effects with the EFT approach in CMS

This presentation

TOP sector

Spans a lot of processes involving single top and top pair productions, and flavor anomalies

EFT effects modeled with Warsaw basis at dim6 order dim6top or SMEFT @ LO

TOP and EWK EFT at CMS

$$\mathscr{C}_{SMEFT} = \mathscr{L}_{SM} + \left| \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} \right| + \left| \sum_{j} \frac{f_j}{\Lambda^4} \mathcal{O}_j^{(8)} \right| + \dots$$

Big efforts to scan all possible sources of indirect new physics effects with the EFT approach in CMS

This presentation

• TOP sector

Spans a lot of processes involving single top and top pair productions, and flavor anomalies

EFT effects modeled with Warsaw basis at dim6 order dim6top or SMEFT @ LO

EWK sector

Focus on vector boson interactions

anomalous Triple/Quartic Gauge Coupling (aTGC/aQGC)

dim6 Warsaw basis (SMEFT @ LO)

dim8 Éboli basis @ LO

- tt(X) multilepton Submitted to JHEP arxiv2307.15761
- Search for cLFV with trileptons **CMS-PAS-TOP-22-005**
- tt with a boosted H or Z PRD 108 (2023) 032008
- ttγ dilepton JHEP 05 (2022) 091

- tt(X) multilepton Submitted to JHEP arxiv2307.15761
- Search for cLFV with trileptons CMS-PAS-TOP-22-005
- tt with a boosted H or Z PRD 108 (2023) 032008
- ttγ dilepton JHEP 05 (2022) 091

- aQGC in electroweak Wyjj PRD 108 (2023) 032017
- SMEFT dim6 in electroweak Wγjj PRD 105 (2022) 052003
- Charged aTGC in WZ multilepton JHEP 07 (2022) 032

- Covered in this talk • tt(X) multilepton Submitted to JHEP arxiv2307.15761
- Search for cLFV with trileptons **CMS-PAS-TOP-22-005**
- tt with a boosted H or Z PRD 108 (2023) 032008
- ttγ dilepton JHEP 05 (2022) 091

EWK

- aQGC in electroweak Wyjj PRD 108 (2023) 032017
- SMEFT dim6 in electroweak Wγjj PRD 105 (2022) 052003
- Charged aTGC in WZ multilepton JHEP 07 (2022) 032

Results in TOP sector

tt(X) multilepton **Overview**

- Target multiple processes to capture as much sensitivity to EFT effects
 - ttH, ttll, ttl ν , tHq, tllq, tttt
- dim6top @ LO + additional parton
 - 26 WCs fitted together

12

tt(X) multilepton **Overview**

- Target multiple processes to capture as much sensitivity to EFT effects
 - ttH, ttll, ttl ν , tHq, tllq, tttt
- dim6top @ LO + additional parton
 - 26 WCs fitted together
- Wide coverage of the phase space exploiting lepton and jet multiplicities
- Fit performed with kinematic quantities sensitive to high-energy anomalies
 - $p_T(\ell j)_{\max}$ p_T of the object pair giving the largest one
 - p_T of the reconstructed Z boson

tt(X) multilepton Phase space and WCs

• Sensitivity optimized by the combination of the different bins

tt(X) multilepton Phase space and WCs

- Sensitivity optimized by the combination of the different bins
- For a specific WC, some categories are more significant than others
- Interference and correlations among WCs also play an important role

	Grouping of WCs	WCs	Lead categories
	Two heavy two leptons	$\begin{array}{c} c_{Q\ell}^{3(\ell)}, c_{Q\ell}^{-(\ell)}, c_{Qe}^{(\ell)}, c_{t\ell}^{(\ell)}, \\ c_{te}^{(\ell)}, c_{t}^{S(\ell)}, c_{t}^{T(\ell)} \end{array}$	3ℓ off-Z
	Four heavy	$c_{\rm QQ}^1, c_{\rm Qt}^1, c_{\rm Qt}^8, c_{\rm tt}^1$	$2\ell ss$
	Two heavy two light " $t\bar{t}l\nu$ -like"	$c_{\rm Qq}^{11}, c_{\rm Qq}^{18}, c_{\rm tq}^{1}, c_{\rm tq}^{8}$	2ℓss
	Two heavy two light "tllq-like"	$c_{\rm Qq}^{31}, c_{\rm Qq}^{38}$	3ℓ on-Z
	• Two heavy with bosons "tītll-like"	$c_{\mathrm{tZ}}, c_{\varphi\mathrm{t}}, c_{\varphi Q}^{-}$	3ℓ on-Z and 2ℓ ss
	• Two heavy with bosons "tXq-like"	$c_{\varphi Q}^3, c_{\varphi tb}, c_{bW}$	3ℓ on-Z
	Two heavy with bosons with signif- icant impacts on many processes	$c_{\mathrm{t}G}, c_{\mathrm{t}\varphi}, c_{\mathrm{t}W}$	3ℓ and $2\ell ss$
	138 fb⁻¹	<u>(13 TeV)</u>	
		Charge m tīlī Triboson	nisid. Misid. leptons tīlv Conv. tWZ tītī ∭ Total unc. ⊣
4j 5j 2b(+)	2j 3j 4j 5j 2j 3j 4j 5j 2j 3l on-7 1b 3l on-7 2b	2j 3j 4j 4/	

tt(X) multilepton **Constraints on single WC**

• Very challenging to run fit over 26 parametres and 178 analysis bins

tt(X) multilepton **Constraints on single WC**

- Very challenging to run fit over 26 parametres and 178 analysis bins
- Provided 1D constraints
 - Other WCs fixed to SM
 - Other WCs profiled
- No significant deviation from SM prediction

																					ľ		
	-	-				-			-	-	-	-	-		-		-		-				
-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		5		
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				
			-																-	1	-1	1	I

_	-		-		-	-	-	_	-	_	-			_	-		_	-		1		
	1	-	-	-	-	-	-	-	-	-				-					1			
																					Ń	
																						1
	•	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1		(
																				L		N
																						ľ
• •	•	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Ł		
																					1	l
	Ι.																			L		1
																					l	l
																					h	Ï
																				V		
-		-		-	-										_		_	-	2	•		
																				L.		
																				Г	Ň	
																					١,	
• •	•		• •	•	•	•	•	•	•	•	•	-	•	•	•	•	•	-	•	Ł		
						•		•	•			-	•				-	-		Ł		

																		ļ	
•		•	• •	•	•••	• •	• •	•	•	• •	-	•	•	• •	•	1	1	1	ļ
																l			
3																I			
-																		ľ	
÷	-	•	• •	•	• •	• •	• •	•	•		•	•	•	• •	•	ł			
)	
												I					Ű	/	

tt(X) multilepton **Constraints on two WCs at a time**

- Provided 2D constraints
 - Other WCs fixed to SM
 - Other WCs profiled \bullet
- No significant deviation from SM prediction
- Correlation depending on the specific pair

Search for cLFV with trileptons **Overview**

• Opposite-charged $e\mu$ pair from cLFV vertex, 1 ℓ from top decay, 1 b-tagged jet

Search for cLFV with trileptons **Overview**

- Opposite-charged $e\mu$ pair from cLFV vertex, 1 ℓ from top decay, 1 b-tagged jet
- cLFV in top decay and top production
 - Highly suppressed in SM

CMS

No interference with SM diagrams \bullet

Search for cLFV with trileptons **Overview**

- Opposite-charged $e\mu$ pair from cLFV vertex, 1 ℓ from top decay, 1 b-tagged jet
- cLFV in top decay and top production
 - Highly suppressed in SM
 - No interference with SM diagrams
- Target scalar, vector, and tensor BSM interactions
 - Interpreted in terms of four-fermion EFT operators (SMEFT-FR @ LO)

Search for cLFV with trileptons **Sensitivity optimization**

• $m_{e\mu}$ to separate the signals

Search for cLFV with trileptons **Sensitivity optimization**

- m_{eu} to separate the signals
- 1 SR for single top (drives the sensitivity)
- 1 SR for tt pair production
- Trained BDT to discriminate signal against backgrounds
 - Score used to perform the fit

Search for cLFV with trileptons Results

- No deviation from SM
- 1D limits on 6 $C_{e\mu tq}$ coefficients
 - More stringent limit on tensor \bullet WC than the others due to its large cross section

eμtu

eµtc

oling	Lorentz structure	$C_{e\mu tq}/\Lambda^2 (\text{TeV}^-)$ exp ($-\sigma, +\sigma$)	⁻²) obs
	tensor	0.019 (0.015, 0.023)	0.020
	vector	0.037 (0.031, 0.046)	0.041
	scalar	0.077 (0.064, 0.095)	0.084
	tensor	0.061 (0.050, 0.074)	0.068
	vector	0.130 (0.108, 0.159)	0.144
	scalar	0.269 (0.223, 0.330)	0.295

Search for cLFV with trileptons Results

- No deviation from SM
- 1D limits on 6 $C_{e\mu tq}$ coefficients
 - More stringent limit on tensor WC than the others due to its large cross section
- Translating into limits on the branching fractions
 - More stringent limits on scalar operator

eµtu

eµtc

ling	I orontz structuro	$C_{\rm e\mu tq}/\Lambda^2$ (TeV ⁻	$\mathcal{B}(t \rightarrow e \mu q) \times 10^{-5}$		
Jiiig	Lorentz structure	$\exp(-\sigma, +\sigma)$	obs	$\exp\left(-\sigma,+\sigma\right)$	
	tensor	0.019 (0.015, 0.023)	0.020	0.019 (0.013, 0.029)	
	vector	0.037 (0.031, 0.046)	0.041	0.013 (0.009, 0.020)	
	scalar	0.077 (0.064, 0.095)	0.084	0.007 (0.005, 0.011)	
	tensor	0.061 (0.050, 0.074)	0.068	0.209 (0.143, 0.311)	
	vector	0.130 (0.108, 0.159)	0.144	0.163 (0.111, 0.243)	
	scalar	0.269 (0.223, 0.330)	0.295	0.087 (0.060, 0.130)	

Search for cLFV with trileptons Results

- No deviation from SM
- 1D limits on 6 $C_{e\mu tq}$ coefficients
 - More stringent limit on tensor WC than the others due to its large cross section
- Translating into limits on the branching fractions
 - More stringent limits on scalar operator
- 2D limits from 1D limits assuming linearity between $B(t \rightarrow e\mu u)$ and $B(t \rightarrow e\mu c)$
- Most stringent limit on $B(t \rightarrow e \mu q)$

eµtu

eµtc

ling	I orontz structuro	$C_{e\mu tq}/\Lambda^2$ (TeV ⁻	${\cal B}({ m t} ightarrow{ m e}\mu{ m q}) imes10^{-6}$				
mig	LOICHLZ SHUCHLE	$\exp(-\sigma, +\sigma)$	obs	$\exp(-\sigma, +\sigma)$	0		
	tensor	0.019 (0.015, 0.023)	0.020	0.019 (0.013, 0.029)	0.		
	vector	0.037 (0.031, 0.046)	0.041	0.013 (0.009, 0.020)	0.		
	scalar	0.077 (0.064, 0.095)	0.084	0.007 (0.005, 0.011)	0.		
	tensor	0.061 (0.050, 0.074)	0.068	0.209 (0.143, 0.311)	0.		
	vector	0.130 (0.108, 0.159)	0.144	0.163 (0.111, 0.243)	0.		
	scalar	0.269 (0.223, 0.330)	0.295	0.087 (0.060, 0.130)	0.		

tt with a boosted H or Z **Overview**

- Single lepton + 1 tagged AK8 jet ($H \rightarrow bb$ discriminator)
- Targeting EFT effects in tt + boosted H/Z along with SM measurements
 - 8 top+boson operators (dim6top @ LO + additional parton)
- Explore the EFT effect in a relevant background
 - c_{bW} and $c_{\phi O}^3$ affecting tt+bb

tt with a boosted H or Z **Overview**

- Single lepton + 1 tagged AK8 jet (H \rightarrow bb discriminator)
- Targeting EFT effects in tt + boosted H/Z along with SM measurements
 - 8 top+boson operators (dim6top @ LO + additional parton)
- Explore the EFT effect in a relevant background
 - c_{bW} and $c_{\phi O}^3$ affecting tt+bb
- Analysis bins defined upon 3 quantities
 - AK8 jet mass, Z/H candidate p_T , and multiclassifier DNN signal score

tt with a boosted H or Z **Event categorization**

• "Flattened" 3D fit -> 66 bins per each year

tt with a boosted H or Z **EFT** sensitivity studies

- EFT predictions renormalized to NLO SM
- From SM measurement, tt+bb higher than expected
 - ttH/ttZ signal strengths towards negative values

tt with a boosted H or Z **EFT** sensitivity studies

- EFT predictions renormalized to NLO SM
- From SM measurement, tt+bb higher than expected
 - ttH/ttZ signal strengths towards negative values
- Induces the tension wrt SM scenario for c_{to}
- Other 1D scans are compatible with SM

Andrea Piccinelli - 6th LHC EFT WG General Meeting (CERN)

31

Andrea Piccinelli - 6th LHC EFT WG General Meeting (CERN)

32

aQGC in electroweak Wyjj **Overview**

- Well-displaced jets, 1 photon, ulletand 1 ℓ coming from W boson
- Measure inclusive and differential cross-sections in a VBS phase space considering any LO diagram relevant to VBS

aQGC in electroweak Wyjj **Overview**

- Well-displaced jets, 1 photon, and 1 ℓ coming from W boson
- Measure inclusive and differential cross-sections in a VBS phase space considering any LO diagram relevant to VBS
- Target aQGC in **EW VBS** process modeled with EFT dim8 operators (Éboli basis @ LO)
- Separate SRs for barrel and endcap
 - SM fit performed using m_{ii} and $m_{\ell\gamma}$
 - aQGC fit with $m_{W\gamma}$

ents

aQGC in electroweak Wyjj Sensitivity to aQGC with EFT

Expected limit	Observed limit	l
$-5.1 < f_{M,0} / \Lambda^4 < 5.1$	$-5.6 < f_{M,0} / \Lambda^4 < 5.5$	
$-7.1 < f_{M,1} / \Lambda^4 < 7.4$	$-7.8 < f_{M,1} / \Lambda^4 < 8.1$	
$-1.8 < f_{M,2}/\Lambda^4 < 1.8$	$-1.9 < f_{M,2}/\Lambda^4 < 1.9$	
$-2.5 < f_{M,3} / \Lambda^4 < 2.5$	$-2.7 < f_{M,3} / \Lambda^4 < 2.7$	
$-3.3 < f_{M,4} / \Lambda^4 < 3.3$	$-3.7 < f_{M,4} / \Lambda^4 < 3.6$	
$-3.4 < f_{M,5} / \Lambda^4 < 3.6$	$-3.9 < f_{M,5} / \Lambda^4 < 3.9$	
$-13 < f_{M,7} / \Lambda^4 < 13$	$-14 < f_{M7} / \Lambda^4 < 14$	
$-0.43 < f_{T,0} / \Lambda^4 < 0.51$	$-0.47 < f_{T,0} / \Lambda^4 < 0.51$	
$-0.27 < f_{T,1} / \Lambda^4 < 0.31$	$-0.31 < f_{T,1} / \Lambda^4 < 0.34$	
$-0.72 < f_{T,2}/\Lambda^4 < 0.92$	$-0.85 < f_{T,2} / \Lambda^4 < 1.0$	
$-0.29 < f_{T.5} / \Lambda^4 < 0.31$	$-0.31 < f_{T.5} / \Lambda^4 < 0.33$	
$-0.23 < f_{T.6} / \Lambda^4 < 0.25$	$-0.25 < f_{T,6} / \Lambda^4 < 0.27$	
$-0.60 < f_{T.7} / \Lambda^4 < 0.68$	$-0.67 < f_{T.7} / \Lambda^4 < 0.73$	
/-	· - /-	

aQGC in electroweak Wyjj Sensitivity to aQGC with EFT

Most stringent limits to date on f_{M2-5} and f_{T6-7}

Expected limit	Observed limit	$U_{ m k}$
$-5.1 < f_{M,0} / \Lambda^4 < 5.1$	$-5.6 < f_{M,0} / \Lambda^4 < 5.5$	-
$-7.1 < f_{M,1} / \Lambda^4 < 7.4$	$-7.8 < f_{M,1} / \Lambda^4 < 8.1$	r 4
$-1.8 < f_{M,2} / \Lambda^4 < 1.8$	$-1.9 < f_{M,2} / \Lambda^4 < 1.9$	1
$-2.5 < f_{M,3} / \Lambda^4 < 2.5$	$-2.7 < f_{M,3} / \Lambda^4 < 2.7$	
$-3.3 < f_{M,4} / \Lambda^4 < 3.3$	$-3.7 < f_{M,4} / \Lambda^4 < 3.6$	r
$-3.4 < f_{M,5} / \Lambda^4 < 3.6$	$-3.9 < f_{M,5} / \Lambda^4 < 3.9$	r A
$-13 < f_{M,7} / \Lambda^4 < 13$	$-14 < f_{M7} / \Lambda^4 < 14$	1
$-0.43 < f_{T,0} / \Lambda^4 < 0.51$	$-0.47 < f_{T,0} / \Lambda^4 < 0.51$	- -
$-0.27 < f_{T,1} / \Lambda^4 < 0.31$	$-0.31 < f_{T,1} / \Lambda^4 < 0.34$	
$-0.72 < f_{T,2}/\Lambda^4 < 0.92$	$-0.85 < f_{T,2}/\Lambda^4 < 1.0$	r A
$-0.29 < f_{T,5}/\Lambda^4 < 0.31$	$-0.31 < f_{T,5} / \Lambda^4 < 0.33$	
$-0.23 < f_{T,6} / \Lambda^4 < 0.25$	$-0.25 < f_{T,6} / \Lambda^4 < 0.27$	1
$-0.60 < f_{T,7} / \Lambda^4 < 0.68$	$-0.67 < f_{T,7} / \Lambda^4 < 0.73$	

aQGC in electroweak Wyjj Sensitivity to aQGC with EFT

- Most stringent limits to date on f_{M2-5} and f_{T6-7}
- Provided U_{bound}
 - Scattering energy violating unitarity for the scattering amplitude
 - Calculated imposing aQGC coupling equal to the observed limit

Expected limit	Observed limit	$U_{\rm b}$
$-5.1 < f_{M,0} / \Lambda^4 < 5.1$	$-5.6 < f_{M,0} / \Lambda^4 < 5.5$]
$-7.1 < f_{M,1} / \Lambda^4 < 7.4$	$-7.8 < f_{M,1} / \Lambda^4 < 8.1$	2
$-1.8 < f_{M,2} / \Lambda^4 < 1.8$	$-1.9 < f_{M,2}/\Lambda^4 < 1.9$	2
$-2.5 < f_{M,3} / \Lambda^4 < 2.5$	$-2.7 < f_{M,3} / \Lambda^4 < 2.7$	2
$-3.3 < f_{M,4} / \Lambda^4 < 3.3$	$-3.7 < f_{M,4} / \Lambda^4 < 3.6$	2
$-3.4 < f_{M,5} / \Lambda^4 < 3.6$	$-3.9 < f_{M,5} / \Lambda^4 < 3.9$	2
$-13 < f_{M,7} / \Lambda^4 < 13$	$-14 < f_{M7} / \Lambda^4 < 14$	2
$-0.43 < f_{T,0} / \Lambda^4 < 0.51$	$-0.47 < f_{T,0} / \Lambda^4 < 0.51$]
$-0.27 < f_{T,1} / \Lambda^4 < 0.31$	$-0.31 < f_{T,1} / \Lambda^4 < 0.34$	2
$-0.72 < f_{T,2}/\Lambda^4 < 0.92$	$-0.85 < f_{T,2}/\Lambda^4 < 1.0$	2
$-0.29 < f_{T,5} / \Lambda^4 < 0.31$	$-0.31 < f_{T,5} / \Lambda^4 < 0.33$	2
$-0.23 < f_{T,6} / \Lambda^4 < 0.25$	$-0.25 < f_{T,6} / \Lambda^4 < 0.27$	2
$-0.60 < f_{T,7} / \Lambda^4 < 0.68$	$-0.67 < f_{T,7} / \Lambda^4 < 0.73$	3
- /	- /	

SMEFT dim6 in Wy **Overview** \mathbf{q}'

- 1 photon and 1 ℓ coming from W
- Measurement of the differential cross \bullet section with RIVET
- Target C_{3W} effects in Wy (SMEFTsim @ LO)

q

SMEFT dim6 in Wy **Overview**

- 1 photon and 1 ℓ coming from W
- Measurement of the differential cross section with RIVET
- Target C_{3W} effects in Wy (SMEFTsim @ LO)
- EFT effects in decay angle φ_f in the Wy center-of-mass frame to enhance sensitivity to SM-EFT interference
 - "Interference resurrection"
 - Important to capture the different final-state helicity configurations for the SM and BSM W_TV_T components

SMEFT dim6 in Wy **Overview**

- 1 photon and 1 ℓ coming from W
- Measurement of the differential cross section with RIVET
- Target C_{3W} effects in Wy (SMEFTsim @ LO)
- EFT effects in decay angle φ_f in the Wy center-of-mass frame to enhance sensitivity to SM-EFT interference
 - "Interference resurrection"
 - Important to capture the different final-state helicity configurations for the SM and BSM W_TV_T components
- Fit with 2D $\varphi_f p_T^{\gamma}$ bins

< Events / GeV

Exp.

Data/I

SMEFT dim6 in Wy **Results**

• 2σ limits as a function of p_T^{γ} cutoff

SMEFT dim6 in Wy Results

- 2σ limits as a function of p_T^{γ} cutoff
- Information from φ_f dramatically improves sensitivity to interference

SMEFT dim6 in Wy **Results**

200 300 500 800 1500

- 2σ limits as a function of p_T^{γ} cutoff
- Information from φ_f dramatically improves sensitivity to interference
- Pure BSM term drives the overall results

Summary

- CMS developed a huge program of EFT searches with the Run-2 dataset to look at all possible directions
 - TOP: broad investigations on peculiar top processes and flavor anomalies
 - EWK: detailed studies of processes involving EWSB actors
- Simultaneous studies of multiple samedimension EFT operators at a time

Summary

- CMS developed a huge program of EFT searches with the Run-2 dataset to look at all possible directions
 - TOP: broad investigations on peculiar top processes and flavor anomalies
 - EWK: detailed studies of processes involving EWSB actors
- Simultaneous studies of multiple samedimension EFT operators at a time
- On the way to uniformize basis choices
 - Pave the way to combinations inside and across sectors
- No deviation from SM
- Established solid bases for further developments with the Run-3 dataset

Summary

- CMS developed a huge program of EFT searches with the Run-2 dataset to look at all possible directions
 - TOP: broad investigations on peculiar top processes and flavor anomalies
 - EWK: detailed studies of processes involving EWSB actors
- Simultaneous studies of multiple samedimension EFT operators at a time
- On the way to uniformize basis choices
 - Pave the way to combinations inside and across sectors
- No deviation from SM
- Established solid bases for further developments with the Run-3 dataset

Thank you And stay tuned for future news!

