Recent results in B physics at the LHC regarding EFTs

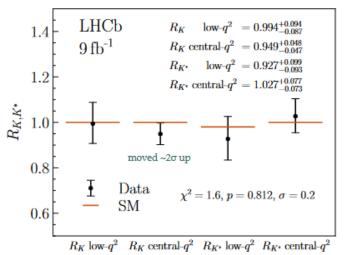
Guy Wormser (IJCLab)
on behalf of the LHC Collaborations
LHCEFT2023

Search for NP in Flavour Physics at the LHC

- Look for observables in B physics
 - where a SM precise prediction is available
 - Experimentally accessible with good accuracy
 - Interpretation of any potential deviation in terms of EFTs
- Three large categories of such observables:
 - CP violation and CKM angles: will not adress these today
 - FCNC decays and in particular $b \rightarrow s \ell^+ \ell^-$ transitions
 - Semileptonic decays and in particular b→cτν transitions

FCNC decays at the LHC: $b \rightarrow s\ell^+\ell^-$ decays

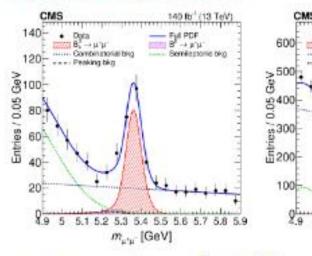
- Heavily suppressed in the SM: good ground to search for new Physics
- Detailed in <u>Rafael Coutinho's presentation</u> at this workshop
- Several interesting other recent results to be mentioned:

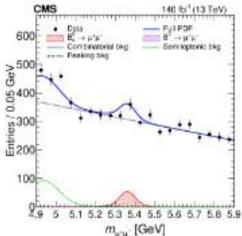

• R(K) from CMS <u>CMS-PAS-BPH-22-005</u>

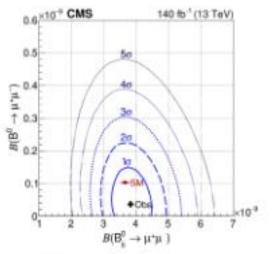
• $\Lambda_b \to \Lambda(1520) \mu^+ \mu^-$ LHCb-PAPER-2022-050

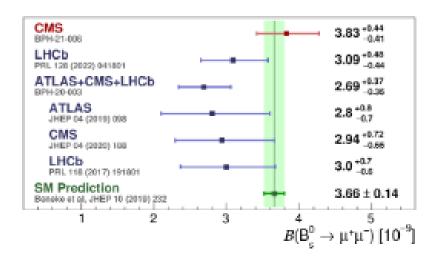
• $\Lambda_b \rightarrow pK\gamma$ LHCb-ANA-2020-046

• C_7 from $B^{\circ} \rightarrow K^{*\circ}e^+e^-$ at low q^2 LHCb-PAPER_2020-020

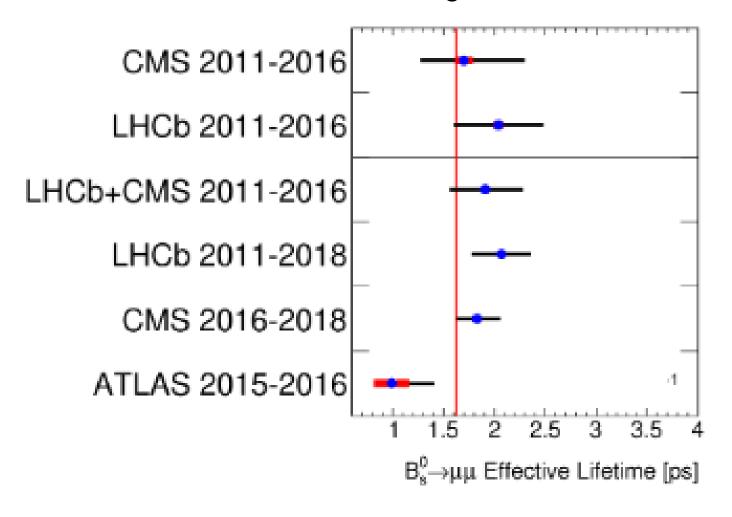





Another important b>s transition: $B_s \rightarrow \mu^+ \mu^-$


Nice BR result from CMS

Phys.Lett.B842(2023)137955

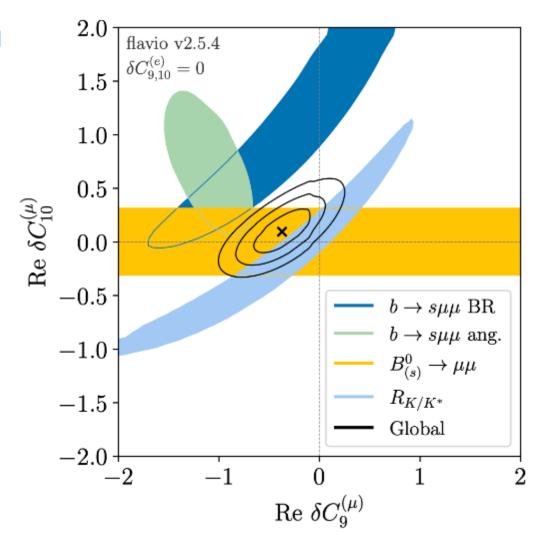


- $\mathcal{B}(\mathrm{B_s^0} \to \mu^+\mu^-) = \left[3.83^{+0.38}_{-0.36}(\mathrm{stat})^{+0.19}_{-0.16}(\mathrm{syst})^{+0.14}_{-0.13}(f_\mathrm{s}/f_\mathrm{u})\right] \times 10^{-9}$
 - BF can be rescaled with a different f_u/f_s
 - $\mathcal{B}(B_s^0 \to \mu^+\mu^-)$ normalised with $B_s^0 \to J/\psi\phi(1020)$ channel in statistical agreement
- $\mathcal{B}(\mathrm{B}^0 \to \mu^+ \mu^-) = \left[0.37^{+0.75}_{-0.67}(stat)^{+0.08}_{-0.09}(syst)\right] \times 10^{-10}$
- $\mathcal{B}(B^0 \to \mu^+\mu^-) < 1.9 \times 10^{-10}$ @ 95% CL

$B_s \rightarrow \mu^+ \mu^-$ lifetimes

Phys.Lett.B842(2023)137955

PhysRevLett128(2022)041801


JHEP 09 (2023) 199

no NP in electrons

 C_9 and C_{10} real

from Camille Normand PhD thesis (2023)

Disfavours a large shift on C_{10}

Lepton Flavour Universality

- Lepton Flavour Universality is one of many « ad hoc » symmetries and « pillars » of the Standard Model
 - Baryon number, lepton number, (charged) lepton flavour,...
- It postulates that the properties of the three charged leptons (e, μ , τ) are the exactly the same beside their mass. This does not need to be the case in many New Physics models
- First hints of Lepton Flavour Universality violation appeared 10 years ago with BABAR publication regarding semi-tauonic B decays. This field became « the hottest game » in town with results coming both from charged and neutral currents

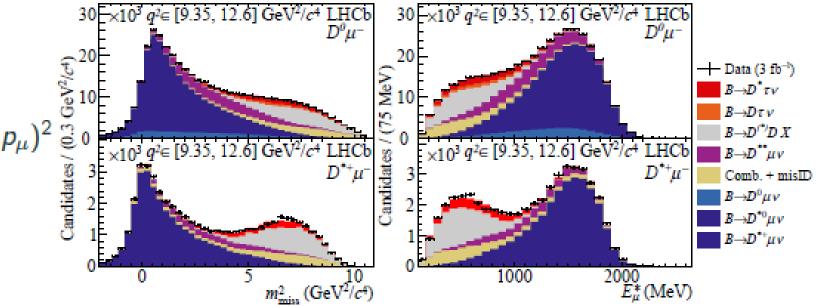
R(D^(*)) measurements in LHCb R(D)=BR(B \rightarrow D $\tau\nu$)/BR(B \rightarrow D $\mu\nu$) $\mu^-\nu_{\tau}\nu_{\mu}$ $\tau^-\rightarrow \pi^-\pi^+\pi^-(\pi^0)\nu_{\tau}$

- Pros
 - Direct measurement of R(D,D*)
 - High statistics
- Cons
 - Double charm background control must be very good (mostly D⁺)
 - Sensitive to D** $\mu^-\nu_\mu$

• Pros

- The possibility to measure the τ vertex is the key to reject the background and obtain a high purity sample
- The 3π dynamics of the τ decay is very specific : possible to distinguish τ decays from the main double charm background from D_s decays
- Cons
 - Access to R(D) requires an external BR
 - Lower statistics

$R(D^{(*)})$ with muonic au decays


[arXiv:2302.02886] (Submitted to PRL)

• Simultaneous measurement of R(D) and $R(D^*)$ with Run 1 data using muonic $\tau^+ \to \mu^+ \nu_\mu \bar{\nu}_\tau$

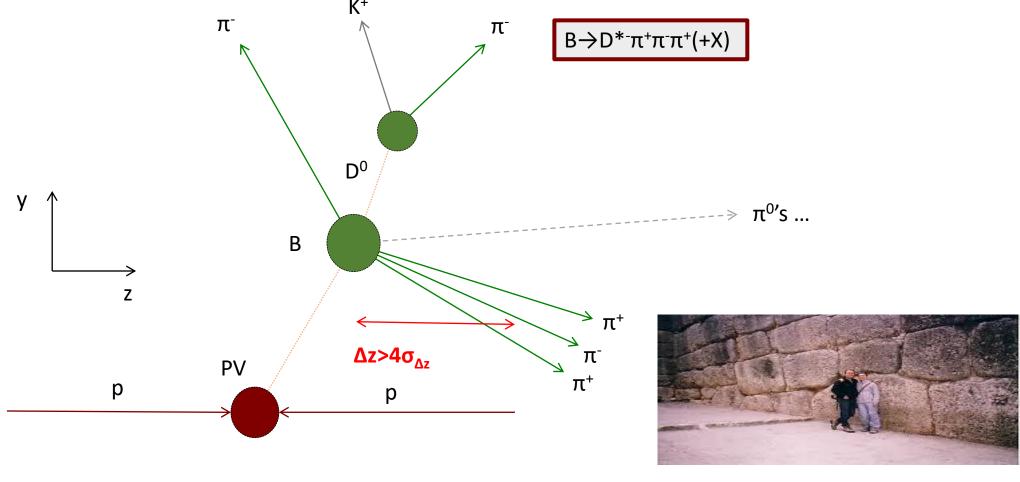
3D template fit to

$$ightharpoonup m_{\text{miss}}^2 \equiv (p_B - p_{D(*)} - p_{\mu})^2$$

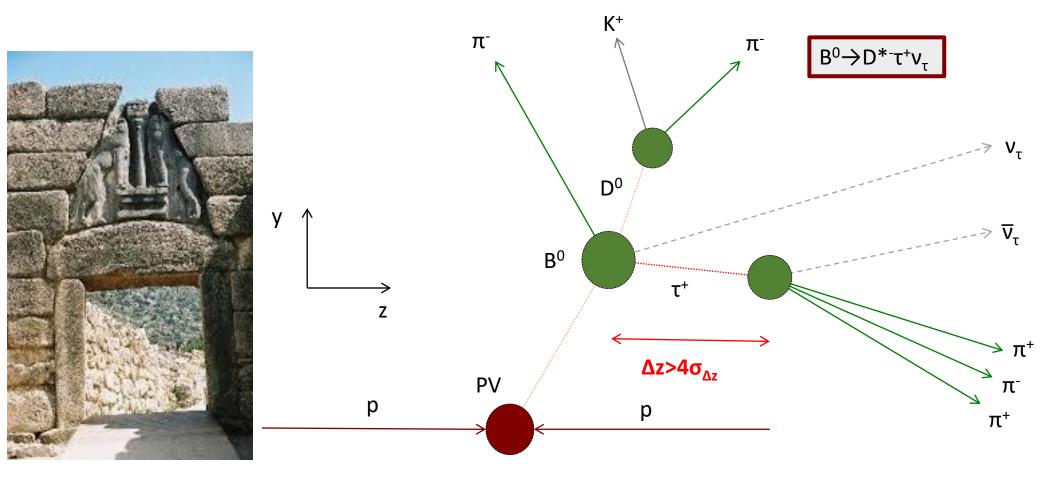
 $ightharpoonup E_{\mu}^*$ energy of μ

$$R(D) = 0.441 \pm 0.060(\text{stat}) \pm 0.066(\text{syst})$$

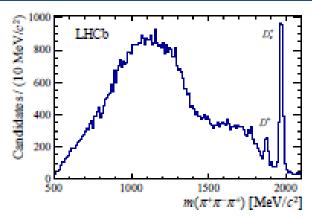
 $R(D^*) = 0.281 \pm 0.018(\text{stat}) \pm 0.023(\text{syst})$

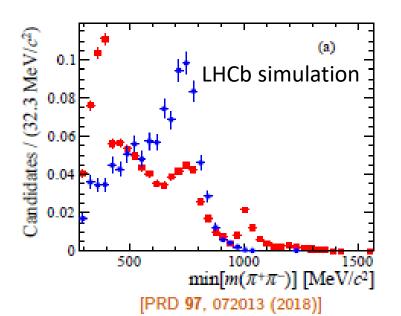

Agreement with SM at 1.9σ

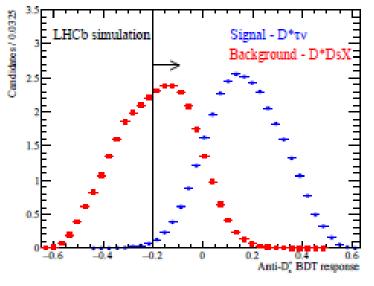
$R(D^*)$ measurement with hadronic τ decays


Vertex topology of the usual B decay 100 times larger than the signal

Selection: detached vertex



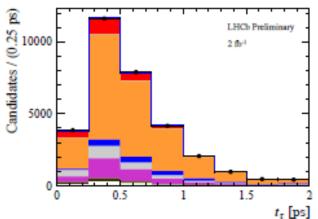

Double-charm backgrounds

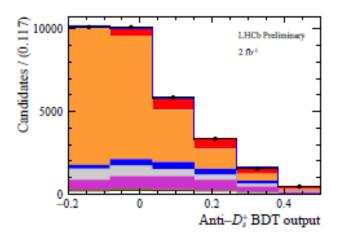


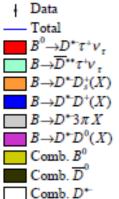
- $B \rightarrow D^{*-}(D_s^+, D^+, D^0)X$ backgrounds
- $B \to D^{*-}D_s^+X$ the largest contributor
- A BDT classifier based on kinematics and resonant structure to separate signal from B → D*-D_s+X

IPRD 97 072013 (2018)]

BR($D_s \rightarrow 3\pi X$)=32.8% ± 0.9% BES-III arxiv:2212.13072


This BDT output is one of the fit variables for signal extraction


Signal extraction



LHCb-PAPER-2022-052 arxiv:2305.01463

$${}^{ ext{Total}}_{B^0 o D^* au^+
u_{ au}} \; {\sf N}(B^0 o D^{*-} au^+
u_{ au}) = 2469\pm 154$$

Run 1 yield = 1296 \pm 86

- ▶ Larger dataset
- ▶ Improved selection

Systematic uncertainties

	Source	Systematic uncertainty on $K(D^*)$ (%)	
	PDF shapes uncertainty (size of simulation sample)	2.0	-
,	Fixing $B \to D^* - D_s^+(X)$ bkg model parameters	1.1	
	Fixing $B \to D^{*-}D^{0}(X)$ bkg model parameters	1.5	
	Fractions of signal τ^+ decays	0.3	
	Fixing the $\overline{D}^{**}\tau^+\nu_{\tau}$ and $D_s^{**+}\tau^+\nu_{\tau}$ fractions	+1.8 -1.9	
,	Knowledge of the $D_s^+ \rightarrow 3\pi X$ decay model	1.0	
	Specifically the $D_s^+ \rightarrow a_1 X$ fraction	1.5	
	Empty bins in templates	1.3	
	Signal decay template shape	1.8	LHCb-PAPER-2022-052
,	Signal decay efficiency	0.9	
	Possible contributions from other $ au^+$ decays	1.0	arxiv:2305.01463
	$B \to D^{*-}D^{+}(X)$ template shapes	+2.2 -0.8	
	$B \to D^{*-}D^{0}(X)$ template shapes	1.2	
	$B \to D^{*-}D_s^+(X)$ template shapes	0.3	
	$B \rightarrow D^{*-} 3\pi X$ template shapes	1.2	
	Combinatorial background normalisation	+0.5 -0.6	
	Preselection efficiency	2.0	
,	Kinematic reweighting	0.7	
	Vertex error correction	0.9	
	PID efficiency	0.5	
	Signal efficiency (size of simulation sample)	1.1	
	Normalisation mode efficiency (modelling of $m(3\pi)$)	1.0	
	Normalisation efficiency (size of simulation sample)	1.1	
	Normalisation mode PDF choice	1.0	_
-	Total systematic uncertainty	+6.2 -5.9	_
_	Total statistical uncertainty	5.9	_

$R(D^*)$ with hadronic τ decays

$$\mathcal{K}(D^*) = \frac{\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-}3\pi^{\pm})} = 1.700 \pm 0.101(\text{stat})^{+0.105}_{-0.100}(\text{syst})$$

• The absolute branching fraction of $B^0 \to D^{*-} \tau^+ \nu_{\tau}$ decays

$$\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau}) = (1.23 \pm 0.07 \, (\mathrm{stat}) \pm 0.08 \, (\mathrm{syst}) \pm 0.05 (\mathrm{ext})) \times 10^{-2}$$

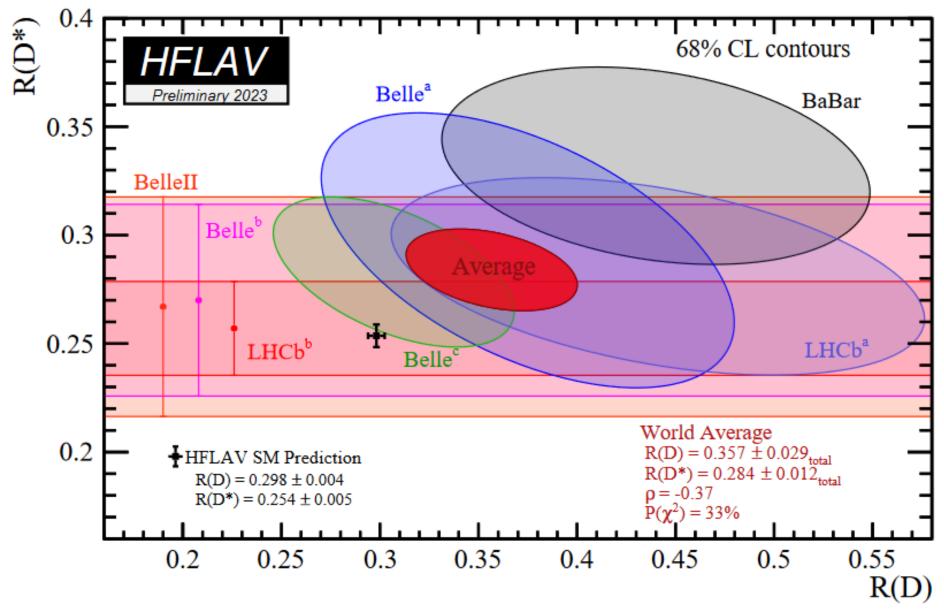
$$R(D^*) = \mathcal{K}(D^*) \frac{\mathcal{B}(B^0 \to D^{*-} 3\pi^{\pm})}{\mathcal{B}(B^0 \to D^{*-} \mu^+ \nu_{\mu})}$$

• The BFs of $B^0 o D^{*-} 3\pi^\pm$ and $B^0 o D^{*-} \mu^+ \nu_\mu$ - external inputs

$$R(D^*) = 0.247 \pm 0.015(\text{stat}) \pm 0.015(\text{syst}) \pm 0.012(\text{ext})$$

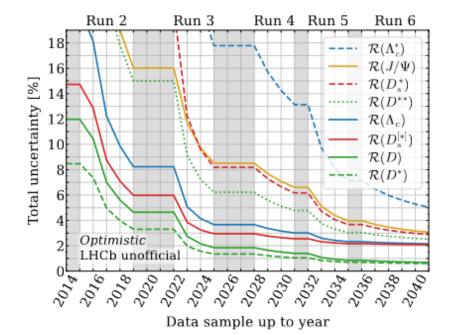
In agreement with Run 1 result

Combining with the Run 1 result


LHCb-PAPER-2022-052 arxiv:2305.01463

$$R(D^*)_{2011-2016} = 0.257 \pm 0.012 \text{ (stat)} \pm 0.014 \text{ (syst)} \pm 0.012 \text{ (ext)}$$

Agreement within 1σ to SM $R(D^*)_{\rm SM} = 0.254 \pm 0.005$ [HFLAV]



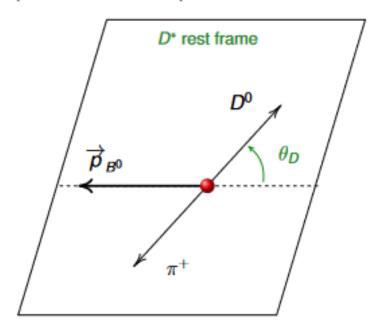
Semitauonic prospects in LHCb

- Many more semitauonic results expected soon using the muonic and hadronic τ decay channel :
 - $\mathcal{R}(D^*)$, R(D°), R(D⁺) using the full Run2 data
 - $\mathcal{R}(D^{+})$
- Work is also ongoing on $\mathcal{R}(D_s)$, $\mathcal{R}(J/\psi)$, full angular analysis

Rev. Mod. Phys. 94, 015003 (2022)

D* polarization LHCb-PAPER-2023-020 arXiv:2311.05224

- Measurement of the longitudinal D^* polarization can provide complementary information to $R(D^*)$, showing NP contribution even if $R(D^*)$ is found compatible with SM expectation
- The differential decay rate can be expressed as 2° polynomial in cos θ_D:

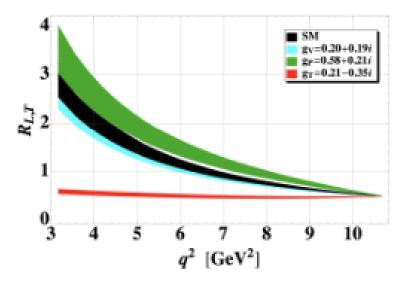

$$\frac{d^2\Gamma}{dq^2d\cos\theta_D} = a_{\theta_D}(q^2) + c_{\theta_D}(q^2)\cos^2\theta_D$$

• D^* longitudinal polarization fraction as function of $a_{\theta_D}(q^2)$ and $c_{\theta_D}(q^2)$:

$$F_L^{D^*}(q^2) = rac{a_{ heta_D}(q^2) + c_{ heta_D}(q^2)}{3a_{ heta_D}(q^2) + c_{ heta_D}(q^2)}$$

State of art is determined by Belle results:

$$F_L^{D^*} = 0.60 \pm 0.08 \pm 0.04$$

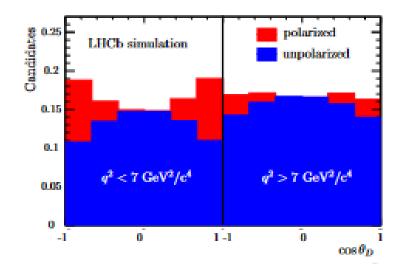

axXiv:1903.03102

D* polarization and NP

- F_L^{D*} value within the SM scenario has been predicted with different methods
- The most recent theoretical predictions are:
 - 0.441 ± 0.006 arXiv:1808.03565 Zhuo-Ran Huang, Ying Li, Cai-Dian Lu, M. Ali Paracha, Chao Wang
 - 0.457 ± 0.010 arXiv:1805.08222 Srimoy Bhattacharya, Soumitra Nandi, Sunando Kumar Patra
- Predictions for NP scenarios can be found in arXiv:1907.02257
 Damir Becirevic, Marco Fedele, Ivan Nisandzic, Andrey Tayduganovd

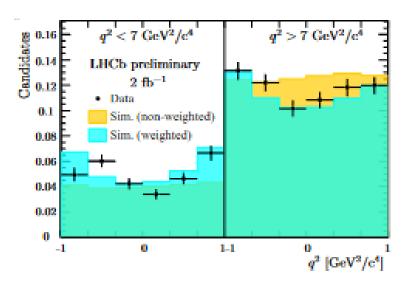
arXiv:1907.02257

 Expected dependence of R_{L,T} as function of q² for three NP models


$$egin{aligned} R_{L,T}(q^2) &= rac{d\Gamma_L/dq^2}{d\Gamma_T/dq^2} \ F_L^{D^*}(q^2) &= rac{R_{L,T}(q^2)}{1 + R_{L,T}(q^2)} \end{aligned}$$

F_L^{D*} determined in two q² regions: ≤7 GeV²/c⁴

- $F_L^{D^*}$ is extracted from $a_{\theta_D}(q^2)$ and $c_{\theta_D}(q^2)$, determined splitting the signal sample in:
 - unpolarized $\Longrightarrow N_{siq}^{unpol} \propto a_{\theta_D}(q^2)$
 - polarized $\Longrightarrow N_{sig}^{pol} \propto c_{\theta_D}(q^2)$
- cos θ_D signal distribution corrected for reconstruction effect

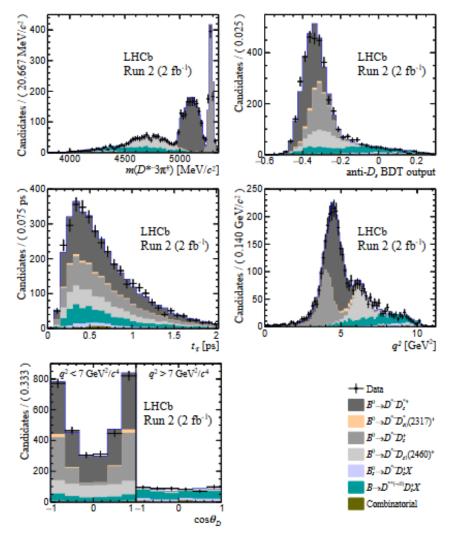


IHCb-PAPFR-2023-020 arXiv:2311.05224

- D*-DX background templates determined from simulation
- Assuming no F_L^{D*} dependence on the D meson decay mode
- cos θ_D distribution corrected through fully reconstructed control samples:

•
$$D^+ \rightarrow K^- 2\pi^+$$

•
$$D^0 \to 3\pi^{\pm}K^{-}$$



Importance of the $D_s \rightarrow \pi\pi\pi$ control sample

LHCb-PAPER-2023-020 arXiv:2311.05224

Systematic uncertainty

Source	low q^2	high <i>q</i> ²	integrated
Fit validation	0.003	0.002	0.003
FF model	0.007	0.003	0.005
FF parameters	0.013	0.006	0.011
TemplateSize	0.027	0.017	0.019
$ au^+ ightarrow 3\pi^\pm\pi^0$ fraction	0.001	0.001	0.001
D** feed-down	0.001	0.004	0.003
Signal selection	0.005	0.004	0.005
Bin migration	0.008	0.006	0.007
$F_L^{D^*}$ in simulation	0.007	0.003	0.007
D _s decay model	0.008	0.009	0.009
$\cos \theta_D D^{*-}D_s$	0.002	0.001	0.002
$\cos \theta_D D^{*-}D_s^{*+}$	0.007	0.002	0.004
$\cos \theta_D D^{*-}D_s X$	0.007	0.006	0.007
$\cos \theta_D D^{*-}D^+X$	0.002	0.002	0.003
$\cos \theta_D D^{*-}D^0 X$	0.002	0.002	0.003
$F_L^{D^*}$ integrated	-	-	0.002
Total	0.036	0.023	0.029

LHCb-PAPER-2023-020 arXiv:2311.05224

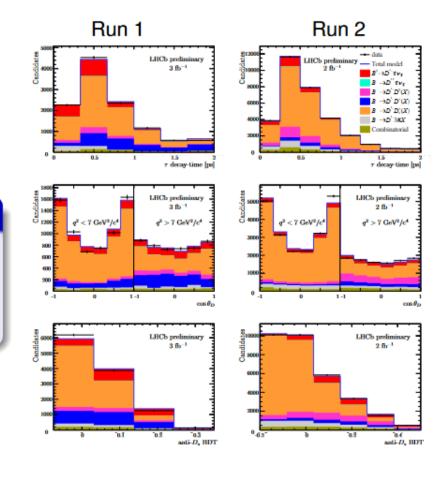
Dominant source of systematic are:

- Limited size of the simulation samples
- Form factor parameterization
- Modelling of the D_s
- $\cos \theta_D$ shape in $D^{*-}D_sX$ backgrounds
- Bin migration
- Signal acceptance
- Form factor model

D* polarization LHCb results LHCb-PAPER-2023-020 arXiv:2311.05224

- Signal yields from a 4D-binned template fit:
 - τ^+ lifetime (first row)
 - $q^2 \& \cos \theta_D$ (second row)
 - anti-D_s BDT output (third row)
- Fit performed simultaneously on Run 1 and Run 2
- Results are integrated over Run 1 and Run 2

$F_L^{D^*}$ value extracted for the 3 q^2 region

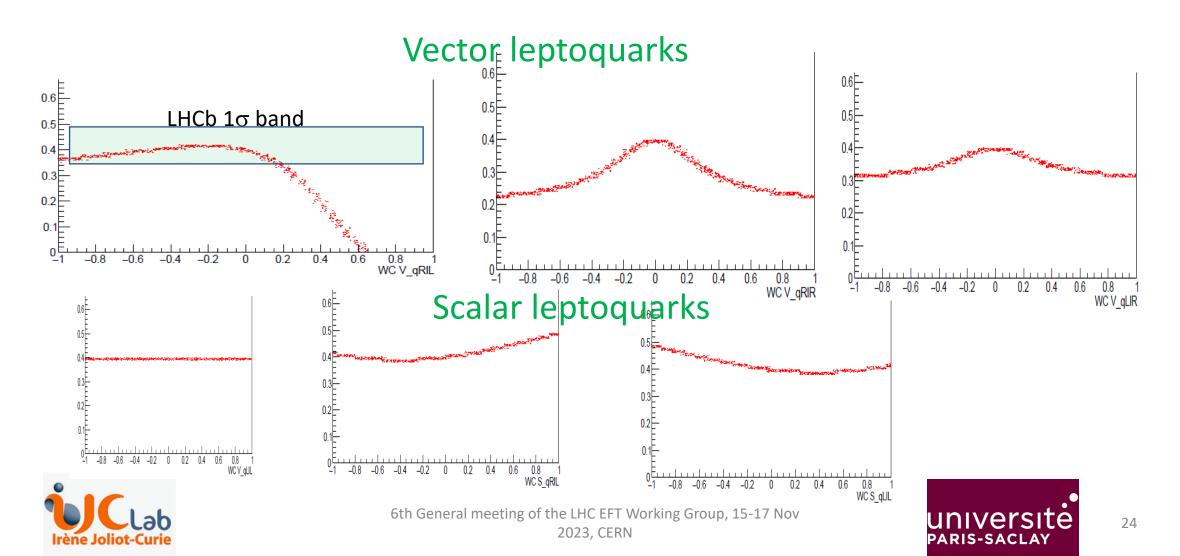

 $q^2 < 7 \,\text{GeV}^2/c^4: \qquad 0.51 \pm 0.07(stat) \pm 0.03(syst)$

 $q^2 > 7 \,\text{GeV}^2/c^4: \qquad 0.35 \pm 0.08(stat) \pm 0.02(syst)$

 q^2 integrated : $0.43 \pm 0.06(stat) \pm 0.03(syst)$

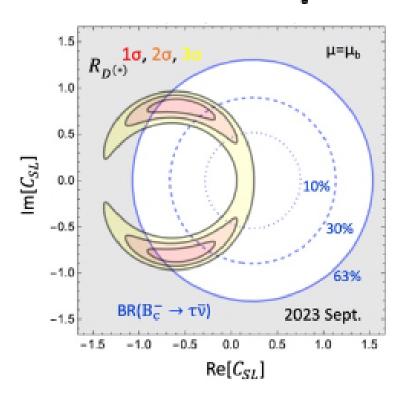
- All values are found to be compatible with the SM within 1σ
 - ullet expected value in the integrated region \sim 0.44

[arXiv:1808.03565, arXiv:1805.08222, arXiv:1907.02257]



Reminder Belle Unpublished : F_1 D*=0.60 ± 0.09 arXiv:1903.03102

Variation of the D* polarization wrt to Wilson coefficients in leptoquark-based EFTs


based on HAMMER F. Bernlochner et al., Eur. Phys. J. C 80, 883 (2020)

Scalar operator revived $o_{SL} = (\bar{c}P_Lb)(\bar{\tau}P_L\nu_{\tau})$

Iguro 2201.06565

$$O_{SL} = (\bar{c}P_L b)(\bar{\tau}P_L \nu_\tau)$$

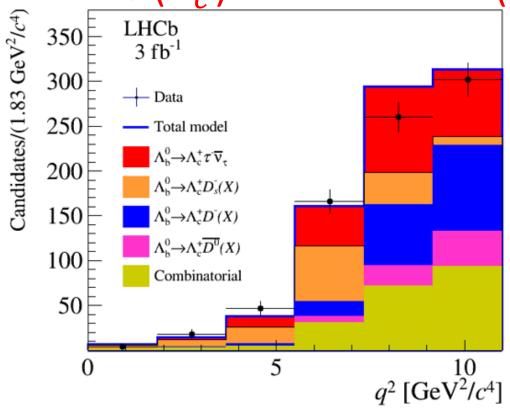
Thanks to the relaxed upper bound from $B_c^- \to \tau \bar{\nu}$ scalar scenario is still viable! Not needed Only scalar can (slightly) enhance $F_L^{D^*}$ anymore!

$$F_{L\,exp}^{D^*} = 0.60 \pm 0.09, \ F_{L\,SM}^{D^*} = 0.46 \pm 0.01$$

We need complex WC

=> Complex Yukawa in type III (General) 2HDM

Reinterpreting **TV** resonance search from the CMS(36fb⁻¹) excludes the scenario with $m_{H^+} > 400 \text{GeV}$



LHCb measurement of R(Λ_c) with hadronic τ decays

LHCb-PAPER-2021-044 arxiv:2201:03497

 $\mathcal{R}(\Lambda_c^+)=0.242 \pm 0.026 \text{ (stat)} \pm 0.040 \text{ (syst)} \pm 0.059 \text{ (ext)}$

(SM expectation= 0.324 ± 0.004)

F. Bernlochner et al., Physical Review D 99 055008 (2019) with input from W. Detmold, C. Lehner, S. Meinel, Physical Review D 92 034503 (2015)

$R(\Lambda_c)$ measurement in LHCb

$$\mathcal{R}(\Lambda_c) \simeq \mathcal{R}_{\text{SM}}(\Lambda_c) \left(0.280 \, \frac{\mathcal{R}(D)}{\mathcal{R}_{\text{SM}}(D)} + 0.720 \, \frac{\mathcal{R}(D^*)}{\mathcal{R}_{\text{SM}}(D^*)} \right)$$

 $= \mathcal{R}_{SM}(\Lambda_c)(1.172 \pm 0.038)$

 $= 0.380 \pm 0.012 \pm 0.005$

to be compared with

LHCb-PAPER-2021-044 arxiv:2201:03497

$$R(\Lambda_c)_{\rm exp} = 0.242 \pm 0.076$$

$$R(\Lambda_c)_{\text{exp}} = 0.242 \pm 0.076$$

 $R(\Lambda_c)_{\text{exp'}} = (0.285 \pm 0.073) \left| \frac{0.04}{V_{cb}} \right|^2$

2211.14172

MF, Blanke, Crivellin, Iguro, Kitahara, Nierste, Watanabe

NP expectations for $\mathcal{R}(\Lambda_c^+)$ in various models

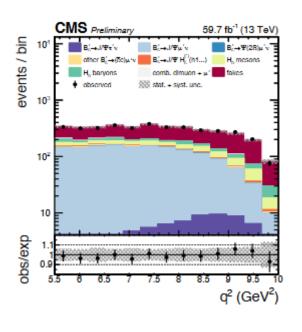
A. Datta et al., Journal of High Energy Physics 1708 (2017) 131

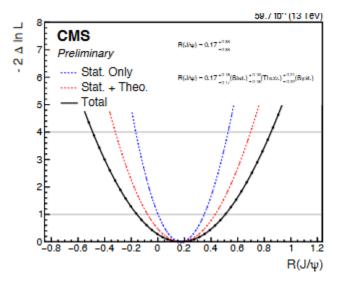
 $\mathcal{R}(\Lambda_c^+)$ can be below or well above SM, when satisfying $\mathcal{R}(D^*)$ - $\mathcal{R}(D)$ constraints

		g_S only	g_P only	g_L only	g_R only	g_T only
		0.4	0.3	-2.2	-0.044	0.4
1	$R(\Lambda_c)$	0.290 ± 0.009	0.342 ± 0.010	0.479 ± 0.014	0.344 ± 0.011	0.475 ± 0.037
1	$R_{\Lambda_c}^{Ratio}$	0.872 ± 0.007	1.026 ± 0.001	1.44	1.033 ± 0.003	1.426 ± 0.100
		-1.5 - 0.3i	0.4 - 0.4i	0.15 - 0.3i	0.08 - 0.67i	0.2 - 0.2i
1	$R(\Lambda_c)$	0.384 ± 0.013	0.346 ± 0.011	0.470 ± 0.014	0.465 ± 0.014	0.404 ± 0.021
1	$R_{\Lambda_c}^{Ratio}$	1.154 ± 0.008	1.040 ± 0.002	1.412	1.397 ± 0.005	1.213 ± 0.050

NP predictions with all present constraints from the meson sector

	Coupling	$R(\Lambda_c)_{max}$	$R_{\Lambda_e,max}^{Ratio}$	coupling value	$R(\Lambda_c)_{min}$	$P_{\Lambda_e,min}^{Ratio}$	coupling value
	g_S only	0.405	1.217	0.363	0.314	0.942	-1.14
	g_P only	0.354	1.062	0.658	0.337	1.014	0.168
	g_L only	0.495	1.486	0.094 + 0.538i	0.340	1.022	-0.070 + 0.395i
	g_R only	0.525	1.576	0.085 + 0.793i	0.336	1.009	-0.012
	q_T only	0.526	1.581	0.428	0.338	1.015	-0.005


Caveat: $R(\Lambda_c^+)$ should be (1.15 ± 0.04)*SM prediction when taking in account R(D) and R(D*) according to M. Blanke et al. Phys. Rev. D 100, 035035 (2019) La Réunion, November 8th 2022



$R(J/\psi)$ in CMS

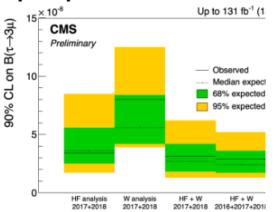
CMS-PAS-BPH-22-012

$$R(J/\psi) = 0.17^{+0.18}_{-0.17} \text{(stat.)} ^{+0.19}_{-0.19} \text{(theo.)} ^{+0.21}_{-0.22} \text{(syst.)}$$

$$R(J/\psi) = 0.17 \pm 0.33$$

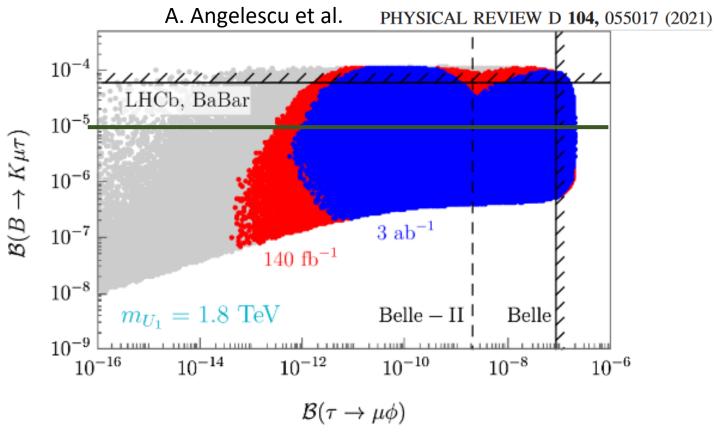
Reminder LHCb-PAPER-2017-035

$$\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \, \tau^+ \nu_\tau)}{\mathcal{B}(B_c^+ \to J/\psi \, \mu^+ \nu_\mu)} = 0.71 \pm 0.17 \, (\text{stat}) \, \pm 0.18 \, (\text{syst})$$



Search for Lepton Number Violation

CMS-PAS-BPH-21-005

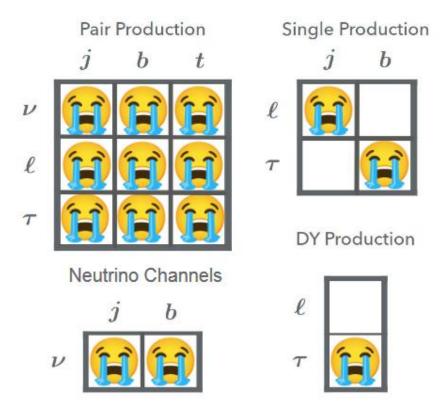

Search for LFV $\tau \rightarrow 3\mu$ decays

Results and prospects

- observed (expected) $\mathcal{B}(\tau \to 3\mu) < 2.9 (2.4) \cdot 10^{-8}$ at 90% CL
- competitive with world's best from Belle $\mathcal{B}(\tau \to 3\mu) < 2.1 \cdot Phys.Lett.B 687 (2010) 139-143$
- Run3 analysis underway, additional $38(28)\,\mathrm{fb^{-1}}$ in 2022 (2023) better triggers, low backgrounds, expected to impr

LHCb BR(B° \to K* $\mu\tau$)<10⁻⁵ **LHCb-PAPER-2022-021** BELLE BR(B* \to K $\mu\tau$)<0.6 10⁻⁵ **Phys. Rev. Lett. 130, 261802**

Direct searches for leptoquarks at the LHC


Slide borrowed from Vojtech Pleskot, Talk given of CKM2023

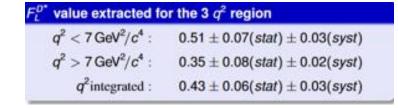
CMS <u>arXiv:2308.06143</u>

arXiv:2308.07826

ATLAS <u>arXiv:2305.15962</u>

arXiv:2303.09444

= excluded by LHC searches within a certain (m, λ) range Limits are mostly at masses of 1 - 1.5 TeV for scalar and 1.5 - 2 TeV for vector LQs



Conclusion

- Strong potential to constraint EFT models with leptoquarks and other NP mediators using semitauonic decays:
 - Using measured yields with various final states spins
 - Using differential information D* polarization : New LHCb result !

Significant potential to exclude some of the Wilson coefficents range in leptoquarks-based EFTs Joint work with theorists would be great!

• Ambitious program in LHCb to measure the full angular distributions in $D^*\tau\nu$ decays D. Hill et al, JHEP11(2019)133

LHCb-PAPER-2023-020 arXiv:2311.05224

- Search is going on in parallel
 - for lepton number violation $\tau^-{\to}\mu^-\;\mu^+\;\mu^-\;,\,B{\to}\;K\;\mu\;\tau,\,...$
 - for direct observation of NP at high P_T
 - Very large experimental effort on FCNC studies

