Machine Learning Opportunities for EFT Analyses

HEIDELBERG ZUKUNFT SEIT 1386

- Maeve Madigan
- **Heidelberg University**

How to perform a global effective field theory analysis of LHC data?

Performing a global Effective Field Theory (EFT) analysis of LHC data invol

1. Define EFT Framework:

Choose an EFT framework relevant to the physics scenario of interest.

2. Generate Simulated Data:

 Simulate expected LHC data using Monte Carlo methods based on the framework.

3. Develop Analysis Pipeline:

• Create an analysis pipeline that includes event selection, background parameter estimation.

4. Implement Machine Learning:

 Integrate machine learning for event classification, anomaly detection of experimental design.

5. Compare with Experimental Data:

 Compare the simulated data with actual LHC data, adjusting EFT paral observed results.

6. Statistical Analysis:

Perform statistical analyses to quantify the agreement between the EF experimental data.

7. Iterative Refinement:

• Iterate through steps 2-6, refining the analysis based on feedback and additional data.

8. Collaboration and Peer Review:

 Engage in collaboration with experts, undergo peer review, and ensure and reproducibility of the analysis.

9. Publication and Interpretation:

• Publish the results, interpret the findings in the context of the chosen E contribute to the global understanding of particle physics.

olves:	
a ahaaan EET	
e chosen EF I	
subtraction, and	Global SMEFT analyses of LHC da
n, and optimization	(according to machine learning)
ameters to match	
T predictions and	
incorporating	
e the transparency	
EFT, and	

From Ramon Winterhalder's talk at Pheno 2023

Why ML in HEP?

Data volume

Large amounts of data 1. labeled (Simulation) 2. unlabeled (Detector)

ML wants lots of data

Rare and elusive signals among large backgrounds

Complexity

2

High-dimensional & highly correlated data structure

ML is expressive and interpretable

1987

Maeve Madigan | Machine Learning Opportunities for EFT Analyses

Signal detection

ML has high accuracy and sensitivity

Machine Learning Opportunities for EFT Analyses : this talk

Overview of recent ML/EFT studies

ML4EFT: unbinned multivariate observables for global SMEFT fits

SIMUnet: global SMEFT and PDF determinations

Overview of recent ML/EFT studies

LHC EFT WG - Area 3: Observables - Opportunities and Challenges of Machine Learning for EFT analyses

Tuesday 24 Oct 2023, 15:00 → 16:40 Europe/Zurich

Statistically optimal observables for global SMEFT fits

Unbinned observables in the top sector

Maeve Madigan | Machine Learning Opportunities for EFT Analyses

Jaco ter Hoeve

2211.02058

Link to slides

- Binned vs unbinned in $(p_T^{\ell \bar{\ell}}, \eta_\ell)$ small improvement relative to binned setup
- 2 features vs 18 features: big increase in sensitivity

Unbinned MVA techniques for EFT analyses

Basic idea: approximate $p(x|\theta)$ with Neural Network

The result will be **fully differential** on **all observables**, quick to evaluate and it can be obtained with a relatively small amount of Monte Carlo points. No transfer functions modeling required.

Universal and systematically improvable

Alfredo Glioti

2007.10356, 2308.05704

Link to slides

works:
$$p(x|\theta) \leftrightarrow nn(x;w)$$

Output 1

Output n

$$p(x|c) = \frac{1}{\sigma} \frac{d\sigma}{dx}(c)$$

- Multivariate in all features X
- Extract full information on relation between data x and Wilson coefficients C
- Optimal constraints on the EFT

Unbinned MVA techniques for EFT analyses

Training on reweighted samples reduces number of training points needed and leads to a higher accuracy

Without reweighting (left) vs with reweighting (right):

Maeve Madigan | Machine Learning Opportunities for EFT Analyses

True likelihood ratio

TREE BOOSTING (+NEURAL NETWORKS) FOR EFT ANALYSES

R. Schöfbeck (HEPHY Vienna), Oct.. 24th, 2023, Area 3 meeting

- A tree is a hierarchical phase-space partitioning (\mathcal{J})

Maeve Madigan | Machine Learning Opportunities for EFT Analyses

• the novelty in the Boosted Information Tree is that we associate each region j with a polynomial $F_i(\theta)$

• Note: A tree algorithm can have an arbitrarily complicated predictive function; here it is a SMEFT polynomial

• Fitting tree: Optimize "node split positions" on some loss. Trained (e.g. greedily) on the *ensemble*.

7

TREE BOOSTING (+NEURAL NETWORKS) FOR EFT ANALYSES

R. Schöfbeck (HEPHY Vienna), Oct.. 24th, 2023, Area 3 meeting

OPTIMALITY IN TEST CASES

- •
- No free lunch Analysis dependent choices are needed
 - Binned analysis: variable binning \rightarrow background estimation is CPU intensive ٠
 - Systematics treatment for unbinned analyses (beyond Higgs M₂) less far developed
- Is it all worth it in higher dimensions? Yes! More examples: [ML4EFT]; full list of references in backup

Maeve Madigan | Machine Learning Opportunities for EFT Analyses

Robert Schöfbeck

Link to slides

[arXiv:2107.10859, arXiv:2205:12976]

Obtain parametrized classifiers with 20-40% improvements in 2D toy cases (NOT marginalized!)

Machine Learning for Higgs CP properties

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_i rac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)}$$

• Beyond-the-SM amplitude is then given by: $|\mathcal{M}_{
m BSM}|^2$

• Interference term leads to asymmetries in CP-odd observables

Possible CP-odd observables

- Statistically optimal observables
- Angular observables less sensitivity but easier implementation
- Machine-learning observables attempt to recover best sensitivity while keeping feasibility

António Jacques Costa 2112.05052

Link to slides

 c_i/Λ^2 the Wilson coefficients, Λ the scale of new physics

$$\begin{split} \widetilde{\mathcal{O}}_{\Phi \widetilde{B}} &= \Phi^{\dagger} \Phi B^{\mu \nu} \widetilde{B}_{\mu \nu} \,, \\ \widetilde{\mathcal{O}}_{\Phi \widetilde{W}} &= \Phi^{\dagger} \Phi W^{i \, \mu \nu} \widetilde{W}^{i}_{\mu \nu} \,, \\ \widetilde{\mathcal{O}}_{\Phi \widetilde{W} B} &= \Phi^{\dagger} \sigma^{i} \widetilde{W}^{i \, \mu \nu} B_{\mu \nu} \,. \end{split}$$

$$= |\mathcal{M}_{\rm SM}|^2 + 2 \mathrm{Re} \{\mathcal{M}_{\rm SM} \mathcal{M}_{\rm d6}^*\} + |\mathcal{M}_{\rm d6}|^2$$

Machine Learning for Higgs CP properties

Neural network-based observable: $h \rightarrow 4\ell$ results

CP-odd observable	$c_{\Phi \widetilde{W}B}/\Lambda^2$ [TeV ⁻²]	$c_{\Phi \widetilde{B}}/\Lambda^2$ [TeV ⁻²]	$c_{\Phi \widetilde{W}}/\Lambda^2$ [TeV ⁻²]
$\Phi_{4\ell}$	[-6.2, 6.2]	[-1.4, 1.4]	[-30, 30]
$\Phi_{4\ell}, m_{12}$	[-1.9, 1.9]	[-0.85, 0.85]	[-3.7, 3.7]
O _{NN} (binary)	[-1.5, 1.5]	[-0.75, 0.75]	[-3.0, 3.0]
O _{NN} (multi-class)	[-1.4, 1.4]	[-0.71, 0.71]	[-2.7, 2.7]

- Factor 2 to 10 improvement using O_{NN} in sensitivity to Wilson coefficients
- Considerable gain can be recovered by two-dimensional fit to $\phi_{4\ell}$ and m_{12}

Maeve Madigan | Machine Learning Opportunities for EFT Analyses

António Jacques Costa

2112.05052

Link to slides

• Expected 95% confidence intervals for the three Wilson coefficients given an integrated luminosity of 139 fb⁻¹

Reusing Neural Networks: Experiences and suggestions for EFT cases

Initial experiences with reinterpretation

- So far: two publicly available LHC analysis NN networks both from ATLAS SUSY:
 - ANA-SUSY-2019-04 (RPV SUSY search in lep+jets final state)
 - ANA-SUSY-2018-30 (gluino pair production in multi-b final states) 0
- This is a new type of experimental output the experiments are still feeling out how to publicise this.
- ANA-SUSY-2018-30 has worked well in multiple frameworks (rivet, gambit, checkmate, ...).
- Several key features made this work:
 - Lots of extra info (ordering, units, usage example) would have 0 been impossible without SimpleAnalysis¹.
 - All inputs are easily accessible to reinterpretation tools 0
 - Lepton/jet kinematics, MET, btag yes/no
 - No detector-level variables (including continuous btag score)

Tomasz Procter, LHC EFT WG Area 3, October 2023

Tomasz Procter

Link to slides

<u>Cut</u>	<u>Paper</u>	<u>Rivet</u>	
0-lep	80.0	83.7	
Δφ ^{4j} _{min} ≥0.6	52.5	54.6	
2800-1400 NN Cut	21.7	23.9	
Δφ ^{4j} _{min} ≥0.6	52.5	54.6	
2300-1000 NN Cut	21.3	23.3	
∆¢ ^{4j} _{min} ≥0.4	<mark>61.1</mark>	63.8	
2100-1600 NN Cut	6.20	6.50	
Δφ ^{4j} _{min} ≥0.4	61.1	63.8	
2000-1800 NN Cut	0.192	0.204	

¹Simplified ATLAS SUSY analysis framework

Reusing Neural Networks: Experiences and suggestions for EFT cases

Initial experiences with reinterpretation

- So far: two publicly available LHC both from ATLAS SUSY:
 - ANA-SUSY-2019-04 (RPV SUSY search in lep+jets
 - ANA-SUSY-2018-30 (gluino pair production in m
- This is a new type of experimenta experiments are still feeling out he
- Key rule:

Reinterpretation is easiest when the analysis team think about it from the start

- Make sure models can be saved in a preservable format. 0
- Example code snippets, metadata is very important. 0
- Think about choice of inputs: 0
 - Do we need to use efficiencies/surrogates instead?

Tomasz Procter

Link to slides

I I KINI I I				
analysis NN networks -	Cut	<u>Paper</u>	<u>Rivet</u>	
final state)	0-lep	80.0	83.7	
nulti-b final states)	Δφ ^{4j} _{min} ≥0.6	52.5	54.6	
output - the ow to publicise this.	2800-1400 NN Cut	21.7	23.9	
	Δφ ^{4j} ≥0.6	52.5	54.6	

ML4EFT: unbinned multivariate observables for global SMEFT fits

2211.02058 Raquel Gomez Ambrosio, Jaco ter Hoeve, MM, Juan Rojo, Veronica Sanz

Why Unbinned Measurements?

'Presenting Unbinned Differential Cross Section Results', Arratia et al, 2109.13243

- **1. Inference-aware binning:**

optimal choice of binning can be made at the time of each statistical analysis or global fit

e.g. CMS measurement of top pair production in the I+jets channel 2108.02803

Why Unbinned Measurements?

'Presenting Unbinned Differential Cross Section Results', Arratia et al, 2109.13243

1. Inference-aware binning:

2. Derivative measurements: >

optimal choice of binning can be made at the time of each statistical analysis or global fit

given measurements of features x_1, \ldots, x_n , 'post-hoc' measurement' of $f(x_1, ..., x_n)$ possible

Why Unbinned Measurements?

'Presenting Unbinned Differential Cross Section Results', Arratia et al, 2109.13243

1. Inference-aware binning: optimal choice of binning can be made at the time of each statistical analysis or global fit

2. Derivative measurements: \rightarrow given measurements of features x_1, \dots, x_n , 'post-hoc' measurement' of $f(x_1, ..., x_n)$ possible

3. Extension to higher dimensions:
ML-based unbinned unfolding techniques well-suited to multiple features

2211.02058 Raquel Gomez Ambrosio, Jaco ter Hoeve, MM, Juan Rojo, Veronica Sanz

Open-source NN-based python framework for the integration of unbinned multivariate observables into global SMEFT interpretations.

Goal: to provide optimal constraints on the SMEFT

Maeve Madigan | Machine Learning Opportunities for EFT Analyses

https://lhcfitnikhef.github.io/ML4EFT/

2211.02058 Raquel Gomez Ambrosio, Jaco ter Hoeve, MM, Juan Rojo, Veronica Sanz

Open-source NN-based python framework for the integration of unbinned multivariate observables into global SMEFT interpretations.

Goal: to provide optimal constraints on the SMEFT

Diagnostic tool:

What is the information loss given a particular choice of bins?

Maeve Madigan | Machine Learning Opportunities for EFT Analyses

https://lhcfitnikhef.github.io/ML4EFT/

Projections:

If unbinned data are made available, how will SMEFT constraints improve?

2211.02058 Raquel Gomez Ambrosio, Jaco ter Hoeve, MM, Juan Rojo, Veronica Sanz

Open-source NN-based python framework for the integration of unbinned multivariate observables into global SMEFT interpretations.

Related work:

- 2007.10356 Parameterized classifiers for SMEFTA. Glioti et al.
- 2308.05704 Boosted likelihood learning with event reweighting A. Glioti et al
- 2205.12976 Learning the EFT likelihood with tree boosting R. Schöfbeck et al
- + many others

https://lhcfitnikhef.github.io/ML4EFT/

Maeve Madigan | Machine Learning Opportunities for EFT Analyses

$$g(\vec{x}) = 0$$

 $g(\vec{x}) = 1$

 $\vec{x} = \{ m_{t\bar{t}}, p_T^{\ell_1}, p_T^{\ell_2},$ $\Delta\eta_{\ell_1,\ell_2},\Delta\phi_{\ell_1,\ell_2},\ldots\}$

Maeve Madigan | Machine Learning Opportunities for EFT Analyses

$$g(\vec{x}) = 0$$

 $g(\vec{x}) = 1$

Loss function:

$$L[g(\boldsymbol{x}, \boldsymbol{c})] = -\int d\boldsymbol{x} \frac{d\sigma(\boldsymbol{x}, \boldsymbol{c})}{d\boldsymbol{x}} \log(1 - g(\boldsymbol{x}, \boldsymbol{c})) - \int d\boldsymbol{x} \frac{d\sigma(\boldsymbol{x}, \boldsymbol{0})}{d\boldsymbol{x}} \log g(\boldsymbol{x}, \boldsymbol{c})$$

SMEFT

 $L[g(\boldsymbol{x}, \boldsymbol{c})] = -\int d\boldsymbol{x} \frac{d\sigma(\boldsymbol{x}, \boldsymbol{c})}{d\boldsymbol{x}} \log(1 - g(\boldsymbol{x}, \boldsymbol{c})) - \int d\boldsymbol{x} \frac{d\sigma(\boldsymbol{x}, \boldsymbol{0})}{d\boldsymbol{x}} \log g(\boldsymbol{x}, \boldsymbol{c})$

$$L[g(\boldsymbol{x}, \boldsymbol{c})] = -\int d\boldsymbol{x} \frac{d\sigma(\boldsymbol{x}, \boldsymbol{c})}{d\boldsymbol{x}} \log(1 - g(\boldsymbol{x}, \boldsymbol{c})) - \int d\boldsymbol{x} \frac{d\sigma(\boldsymbol{x}, \boldsymbol{0})}{d\boldsymbol{x}} \log g(\boldsymbol{x}, \boldsymbol{c})$$

$$\frac{\delta L}{\delta g} = 0 \Rightarrow g(\mathbf{x}, \mathbf{c}) = \left(1 + \frac{d\sigma(\mathbf{x}, \mathbf{c})}{dx} / \frac{d\sigma(\mathbf{x}, \mathbf{0})}{dx}\right)^{-1} \equiv \frac{1}{1 + r_{\sigma}(\mathbf{x}, \mathbf{c})}$$

$$L[g(\boldsymbol{x}, \boldsymbol{c})] = -\int d\boldsymbol{x} \frac{d\sigma(\boldsymbol{x}, \boldsymbol{c})}{d\boldsymbol{x}} \log(1 - g(\boldsymbol{x}, \boldsymbol{c})) - \int d\boldsymbol{x} \frac{d\sigma(\boldsymbol{x}, \boldsymbol{0})}{d\boldsymbol{x}} \log g(\boldsymbol{x}, \boldsymbol{c})$$

$$\frac{\delta L}{\delta g} = 0 \Rightarrow g(\mathbf{x}, \mathbf{c}) = \left(1 + \frac{d\sigma(\mathbf{x}, \mathbf{c})}{dx} / \frac{d\sigma(\mathbf{x}, \mathbf{0})}{dx}\right)^{-1} \equiv \frac{1}{1 + r_{\sigma}(\mathbf{x}, \mathbf{c})}$$

or:

 $d\sigma(x,c)$ $\overline{d\sigma(x,0)}/$

$$\frac{dx}{dx} = \frac{1 - g(x, c)}{g(x, c)}$$

Parametrised classifie

Exploit the polynomial structure of the SMEFT when defining the classifier g:

$$\hat{r}_{\sigma}(\mathbf{x}, \mathbf{c}) = 1 + \sum_{j=1}^{n_{\text{eft}}} \text{NN}^{(j)}(\mathbf{x})c_j + \sum_{j=1}^{n_{\text{eft}}} \sum_{k\geq j}^{n_{\text{eft}}} \text{NN}^{(j,k)}_{\sigma}(\mathbf{x})c_jc_k$$

Maeve Madigan | Machine Learning Opportunities for EFT Analyses

$$r_{\sigma}(x,c) = \frac{d\sigma(x,c)/dx}{d\sigma(x,0)/dx} = \frac{1 - g(x,c)}{g(x,c)}$$

c.f.
$$k_i(C) = 1 + r_{\text{lin},i}C + r_{\text{quad},i}C^2$$
 $i = 1, ..., n_{bins}$

Parametrised classifie

Exploit the polynomial structure of the SMEFT when defining the classifier g:

$$\hat{r}_{\sigma}(\mathbf{x}, \mathbf{c}) = 1 + \sum_{j=1}^{n_{\text{eft}}} \text{NN}^{(j)}(\mathbf{x})c_j + \sum_{j=1}^{n_{\text{eft}}} \sum_{k \ge j}^{n_{\text{eft}}} \text{NN}^{(j,k)}_{\sigma}(\mathbf{x})c_j c_k$$

Parallelisable: generate a training sample with only c_i and learn only $NN^i(\mathbf{x})$

Maeve Madigan | Machine Learning Opportunities for EFT Analyses

$$r_{\sigma}(x,c) = \frac{d\sigma(x,c)/dx}{d\sigma(x,0)/dx} = \frac{1 - g(x,c)}{g(x,c)}$$

well-suited to global fits of many SMEFT coefficients

Validation against the analytical calculation of $dm_{t\bar{t}}dy_{t\bar{t}}$ for **parton-level** $t\bar{t}$ production

Train multiple instances of **g** to quantify the impact of finite training data samples

Validation against the analytical calculation of $dm_{t\bar{t}}dy_{t\bar{t}}$ for parton-level $t\bar{t}$ production

• Unbinned exact and unbinned ML agree:

validation of methodology

Maeve Madigan | Machine Learning Opportunities for EFT Analyses

 $d^2\sigma$

95% C.L. intervals, $\mathcal{O}(\Lambda^{-4})$, $\mathcal{L} = 300 \text{fb}^{-1}$

Validation against the analytical calculation of $dm_{t\bar{t}}dy_{t\bar{t}}$ for parton-level $t\bar{t}$ production

• Unbinned exact and unbinned ML agree:

validation of methodology

Binning 1 -> binning 2 -> binning 3

finer binning in $m_{t\bar{t}}$ -

 Binning converges to unbinned constraints with finer binning:

binning 3: $3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, \infty$) TeV.

 $d^2\sigma$

95% C.L. intervals, $\mathcal{O}(\Lambda^{-4})$, $\mathcal{L} = 300 \text{fb}^{-1}$

EFT WG 16.11.23

Unbinned observables in the top sector

Maeve Madigan | Machine Learning Opportunities for EFT Analyses

Particle-level top quark pair production in the dileptonic channel:

$$pp \to t\bar{t} \to \ell^+ \ell^- b\bar{b}\nu_\ell\bar{\nu}_\ell$$

Constraints on 8 SMEFT operators:

 O_{tG} + 4-fermion operators

Unbinned observables in the top sector

Marginalised 95 % C.L. intervals, $\mathcal{O}(\Lambda^{-4})$ at $\mathcal{L} = 300 \text{ fb}^{-1}$

Maeve Madigan | Machine Learning Opportunities for EFT Analyses

Particle-level top quark pair production in the dileptonic channel:

$$pp \to t\bar{t} \to \ell^+ \ell^- b\bar{b}\nu_\ell\bar{\nu}_\ell$$

Constraints on 8 SMEFT operators:

 O_{tG} + 4-fermion operators

Maeve Madigan | Machine Learning Opportunities for EFT Analyses

Binned vs unbinned in $(p_T^{\ell \overline{\ell}}, \eta_\ell)$: small improvement from unbinned measurements, relative to nominal

Unbinned observables in the Higgs sector

Marginalised 95 % C.L. intervals, $\mathcal{O}(\Lambda^{-4})$ at $\mathcal{L} = 300 \text{ fb}^{-1}$

Maeve Madigan | Machine Learning Opportunities for EFT Analyses

STXS binning - see also 1908.06980, Brehmer et. al

Constraints on 7 SMEFT coefficients:

 $c_{\varphi u}, c_{\varphi d}, c_{\varphi q}^{(1)}, c_{\varphi q}^{(3)}, c_{\varphi W}, c_{\varphi WB}, c_{b \varphi}$

Future directions

- treatment of systematic uncertainties

- New unbinned measurements can be combined alongside existing binned measurements:

$$\log \mathcal{L}(c) = \sum_{k=1}^{N_D^{(\text{unbinned})}} \log \mathcal{L}_k^{\text{unbinned}}(c) + \sum_{k=1}^{N_D^{(\text{binned})}} \log \mathcal{L}_k^{\text{binned}}(c)$$

- incorporate parton-showered observables Work in progress, Pim Herbschleb, Jaco ter Hoeve

Work in progress, Jaco ter Hoeve, MM

Work in progress by Elie Hammou, Maeve Madigan, Luca Mantani, James Moore, Manuel Morales Alvarado, Mark Nestor Costantini, Maria Ubiali

Maeve Madigan | Machine Learning Opportunities for EFT Analyses

SIMUnet: an open-source tool for the simultaneous fit of PDFs

PDF-EFT Interplay

Maeve Madigan | Machine Learning Opportunities for EFT Analyses

SMEFT Fits and BSM searches

PDF fits

BSM parameters are kept fixed:

$$\sigma(\bar{c},\theta) = f_1(\theta) \otimes f_2(\theta) \otimes \hat{\sigma}(\bar{c})$$

Typically PDF fits assume the SM: $\bar{c} = 0$

SMEFT Fits and **BSM** searches

PDF fits

BSM parameters are kept fixed:

$$\sigma(\bar{c},\theta) = f_1(\theta) \otimes f_2(\theta) \otimes \hat{\sigma}(\bar{c})$$

Typically PDF fits assume the SM: $\bar{c} = 0$

SMEFT Fits and BSM searches

PDF parameters are fixed:

$$\sigma(c,\bar{\theta}) = f_1(\bar{\theta}) \otimes f_2(\bar{\theta}) \otimes \hat{\sigma}(c)$$

PDFs used in BSM searches rely on SM assumptions

Often the data used in PDF fits are also used in EFT fits.

This overlap will grow as we take the global approach to constraining the SMEFT.

EFT WG 16.11.23

Data overlap

Often the data used in PDF fits are also used in EFT fits.

This overlap will grow as we take the global approach to constraining the SMEFT.

Data included in NNPDF4.0, [2109.02653]:

- Fixed-target DIS
- Collider DIS
- Fixed-target DY
- Collider gauge boson production
- Collider gauge boson production+jet
- Z transverse momentum
- Top-quark pair production
- Single-inclusive jet production
- Di-jet production
- Direct photon production
- Single top-quark production
- Black edge: new in NNPDF4.0

EFT WG 16.11.23

Data overlap

Often the data used in PDF fits are also used in EFT fits.

This overlap will grow as we take the global approach to constraining the SMEFT.

e.g. Top quark data used to fit the SMEFT in the global fit of 2012.02779, J. Ellis, MM, K. Mimasu, V. Sanz, T. You

Simultaneous PDF and SMEFT determinations

High-mass Drell-Yan

Neglecting PDF-EFT interplay at the **HL-LHC** leads to a significant overestimate of EFT constraints

S. Iranipour, M. Ubiali, 2201.07240

Simultaneous PDF and SMEFT determinations

Kassabov et. al: 2303.06159

gg luminosity $\sqrt{s} = 13 \text{ TeV}$

SMEFT PDF (all top data) (68 c.l.+1 σ)

m_x (GeV)

10²

Simultaneous PDF and SMEFT determinations

Top quark data

Kassabov et. al: 2303.06159

SIMUnet methodology

An extension of the NNPDF framework

• PDFs parameterised by a neural network

Maeve Madigan | Machine Learning Opportunities for EFT Analyses

Ball et. al, NNPDF4.0, 2109.02653

SIMUnet methodology

Additional layer accounts for dependence of partonic cross section on Wilson coefficients via k-factor approximation

SIMUnet methodology

An extension of the NNPDF framework

- PDFs parameterised by a neural network
- Propagates uncertainties from data to NN parameters using the Monte Carlo replica method

SIMUnet fits: SMEFT

Train only the final layer: reproduce **SMEFT-only fits**

SIMUnet fits: PDFs

Train only the PDF NN weights on all data: reproduce **PDF-only fits**

SIMUnet fits: SMEFT and PDFs

Train everything: **simultaneous fit**

SIMUnet fits: SMEFT and PDFs

Train everything: **simultaneous fit**

SIMUnet fits: new physics contamination

Fit only the PDF to pseudodata modified by new physics effects and assess the fit quality: is new physics absorbed?

SIMUnet fits: new physics contamination

Fit only the PDF to pseudodata modified by new physics effects and assess the fit quality: is new physics absorbed?

e.g. HL-LHC high mass DY, *E. Hammou et. al 2307.10370*

uū + dd luminosity $\sqrt{s} = 14 \text{ TeV}$

SIMUnet fits: new physics contamination

e.g. HL-LHC high mass DY, E. Hammou et. al 2307.10370

Fit only the PDF to pseudodata modified by new physics effects and assess the fit quality: is new physics absorbed?

80 **Simultaneous fits of PDFs and linear SMEFT effects**

Simultaneous fits of PDFs and linear SMEFT effects

+ Fits of any linear combinations of Wilson coefficients

e.g. electroweak oblique parameters W,Y

80	PDF-independent observables	30 -
		20 -
		10 -
	E.g. measurements of W	- 0 - ²
	polarisations in top decay,	Ĕ ∼ −10 -
	electroweak precision	-20 -
	observables	-30 -
		-40 -

PDF-independent observables 80

Tests for new physics absorption 80

80 PDF-independent observables

- 80
- Tests for new physics absorption
- + new data from the Higgs, diboson, electroweak, Drell-Yan and top sectors + Tutorials, website and documentation

Conclusions

Many examples of the use of ML in EFT analyses

multivariate and unbinned analyses using parametrised classifiers and tree-boosting algorithms; NN-based observables; importance of re-interpretability

Unbinned multivariate observables for global SMEFT analyses from parametrised classifiers - optimal SMEFT constraints: ML4EFT

Simultaneous determinations of PDFs and the SMEFT made possible by **SIMUnet**

See also the HEP ML Living Review: https://iml-wg.github.io/HEPML-LivingReview/

Maeve Madigan | Machine Learning Opportunities for EFT Analyses

https://indico.cern.ch/event/1331690/

Conclusions

Many examples of the use of ML in EFT analyses

multivariate and unbinned analyses using parametrised classifiers and tree-boosting algorithms; NN-based observables; importance of re-interpretability

Unbinned multivariate observables for global SMEFT analyses from parametrised classifiers - optimal SMEFT constraints: ML4EFT

Simultaneous determinations of PDFs and the SMEFT made possible by **SIMUnet**

See also the HEP ML Living Review: https://iml-wg.github.io/HEPML-LivingReview/

Maeve Madigan | Machine Learning Opportunities for EFT Analyses

Thank you for listening!

https://indico.cern.ch/event/1331690/

Maeve Madigan | Machine Learning Opportunities for EFT Analyses

Backup

The Monte Carlo Replica Method

- $\tilde{\sigma}_{\exp} \sim \mathcal{N}(\sigma_{\exp}, \Sigma)$ 1. Resample:
- $\bar{c} = \arg \min_{c} \frac{(\sigma(c) \tilde{\sigma}_{\exp})^2}{\delta \sigma^2}$ 2. Minimise:
- 3. Repeat, and treat the sample $\{\overline{c}\}$ as a sample from the Bayesian posterior p(c|D)

- Often used in the context of PDF fitting and SMEFT fitting, e.g. 2109.02653, 1901.05965

The Monte Carlo Replica May 2023 14:42

2. Minimise:
$$\bar{c} = \arg \min_c \frac{(\sigma(c) - \tilde{\sigma}_{\exp})^2}{\delta \sigma^2}$$

EFT WG 16.11.23

The Monte Carlo Replica May 2023 14:42

EFT WG 16.11.23

For parameter estimation, we would like to be able to

where
$$f_{\sigma}(\mathbf{x}, \mathbf{c}) = \frac{1}{\sigma(\mathbf{x}, \mathbf{c})} \frac{d\sigma(\mathbf{x}, \mathbf{c})}{d\mathbf{x}}$$

However: analytical calculation of \mathcal{L} is intractable in most realistic cases. **Instead:** approximate \mathcal{L} using neural networks

Maeve Madigan | Machine Learning Opportunities for EFT Analyses

calculate the likelihood:
$$\mathcal{L}(D|\mathbf{c}) \propto \prod_{i=1}^{N_{ev}} f_{\sigma}(\mathbf{x}_i, \mathbf{c})$$

$$D = \{\mathbf{x}_i\} \qquad \mathbf{x}_i = \{m_{t\bar{t}}, p_T^{\ell_1}, p_T^{\ell_2}, \Delta\eta_{\ell_1,\ell_2}, \Delta\phi_{\ell_1,\ell_2}, \dots\}$$

multi-differential cross section in all features

Train a classifier **g** to distinguish the SM from the SMEFT:

Train a classifier **g** to distinguish the SM from the SMEFT:

$$\frac{\delta L}{\delta g} = 0 \Rightarrow g(\mathbf{x}, \mathbf{c}) = \left(1 + \frac{d\sigma(\mathbf{x}, \mathbf{c})}{\sigma}\right)$$

$$(1 - g(\mathbf{x}_i, \mathbf{c})) - \sum_{i=1}^{N_{ev}^{SM}} \frac{d\sigma(\mathbf{x}_i, \mathbf{0})}{dx} \log(g(\mathbf{x}_i, \mathbf{0}))$$

$$SM \text{ training pseudo data sample}$$

 $\frac{d\sigma(\mathbf{x}, \mathbf{c})}{dx} / \frac{d\sigma(\mathbf{x}, \mathbf{0})}{dx} \Big)^{-1} \equiv \frac{1}{1 + r_{\sigma}(\mathbf{x}, \mathbf{c})}$

Train a classifier **g** to distinguish the SM from the SMEFT:

SMEFT training pseudodata samp

$$\frac{\delta L}{\delta g} = 0 \Rightarrow g(\mathbf{x}, \mathbf{c}) = \left(1 + \frac{d\sigma(\mathbf{x}, \mathbf{c})}{dx} / \frac{d\sigma(\mathbf{x}, \mathbf{0})}{dx}\right)^{-1} \equiv \frac{1}{1 + r_{\sigma}(\mathbf{x}, \mathbf{c})}$$

In the limit of infinite training samples, the decision boundary is 1:1 with the likelihood

$$(1 - g(\mathbf{x}_i, \mathbf{c})) - \sum_{i=1}^{N_{ev}^{SM}} \frac{d\sigma(\mathbf{x}_i, \mathbf{0})}{dx} \log(g(\mathbf{x}_i, \mathbf{0}))$$

$$SM \text{ training pseudo data sample}$$

'Y P

