

Update on EFT prediction note

Alberto Belvedere on behalf of the LHC EFT prediction note team

Alberto Belvedere

17 November 2023

Introduction

This note aims to provide a **guide** to obtain SMEFT predictions, highlighting **best** practices and documenting common pitfalls.

Identify the subtleties and provide solution to common problems of the available simulation methods:

Direct simulation

Simulation of a desired configuration of the Wilson coefficients.

• CPU demanding to get high statistical precision. Conceptually clean.

Separate simulation

- CPU demanding to get high statistical precision.
- Independent from any reference point.

Not covered in the note:

Model comparison, truncation uncertainty, choice of observables.

Main topic

Different samples for SM, linear and quadratic EFT predictions.

Reweighted simulation

Single sample with a per-event weight to get different values of Wilson coefficients.

- Least demanding in CPU.
- Predictions far from reference point can lead to large weights.

Introduction

Different physics processes that cover most of the LHC physics program have been chosen as benchmark for the main EFT prediction generation methods.

1	Introduction
2	Best practises
3	Simulation studies of EFT prediction methods
3.1	Methodology and comparisons
3.2	Helicity and reweighting of predictions for the WZ process
3.3	Helicity and reweighting of predictions for the ZH process
3.4	The tt process at LO and NLO
3.5	Studies in the t $\overline{t}Z$ process at NLO
3.6	Helicity aware and ignorant reweighting in the $t\bar{t}Z$ process \ldots \ldots \ldots \ldots
3.7	The VBF H process
3.8	Multiboson processes
3.9	Post-mortem reweighting
4	Summary

Contents

Reweighting in WZ

- Model: SMEFTsim
- Operator: \mathcal{O}_W , $\mathcal{O}_{\widetilde{W}}$
- Final state: summed on all helicity configurations.

Helicity ignorant reweighting works better when summing on all the helicity configurations.

Alberto Belvedere

S. Banerjee, A. Calandri, S. Chatterjee, F. Glessgen, N. Smith, V. Perovic

Reweighting in WZ

Alberto Belvedere

S. Banerjee, A. Calandri, S. Chatterjee, F. Glessgen, N. Smith, V. Perovic

Reweighting in ZH

S. Banerjee, A. Calandri, S. Chatterjee, F. Glessgen, N. Smith, V. Perovic

Reweighting for *tt*

LO simulation

	sm	ctu1	cqd1	cqq13	ctu8	cqu1	cqq11	cqq83	ctd1	ctd8	ctg	ctq1	cqq81	cqu8	cqd8	ctq8	c_i	1
sm	455.58	-0.00	0.00	0.00	4.19	-0.00	0.00	1.66	-0.00	2.98	146.04	0.00	6.57	4.13	2.99	7.02	c_{tu}^8	4.2
ctu1	-0.00	4.04	-0.00	0.00	-0.00	1.09	0.00	-0.00	0.00	0.00	-0.00	0.00	-0.00	0.00	0.00	0.00	c_{td}^8	2.7
cqd1	0.00	-0.00	2.57	-0.00	-0.00	0.00	0.00	-0.00	0.78	0.00	-0.00	0.00	0.00	0.00	0.00	0.00	$\begin{vmatrix} c_{tq}^8 \\ 8 \end{vmatrix}$	6.9
cqq13	0.00	0.00	-0.00	5.86	-0.00	0.00	4.25	-0.00	0.00	-0.00	0.00	0.39	-0.00	-0.00	-0.00	0.00	c_{Qu}^8	4.20
ctu8	4.19	-0.00	-0.00	-0.00	0.90	-0.00	0.00	0.00	-0.00	-0.00	0.63	-0.00	-0.00	0.24	-0.00	-0.00	$\begin{bmatrix} c_{Qd} \\ c_{Qa}^{8,1} \end{bmatrix}$	6.9
cqu1	-0.00	1.09	0.00	0.00	-0.00	3.98	0.00	0.00	-0.00	0.00	-0.00	0.00	-0.00	-0.00	0.00	0.00	$c^{8,3}_{Qq}$	1.5
cqq11	0.00	0.00	0.00	4.25	0.00	0.00	5.86	-0.00	-0.00	-0.00	0.00	1.79	-0.00	-0.00	-0.00	-0.00	c_{tu}^1	[0.6
cqq83	1.66	-0.00	-0.00	-0.00	0.00	0.00	-0.00	1.30	-0.00	0.00	0.24	-0.00	0.95	-0.00	-0.00	0.09	c_{td}^1	[-0.2
ctd1	-0.00	0.00	0.78	0.00	-0.00	-0.00	-0.00	-0.00	2.56	0.00	0.00	0.00	0.00	-0.00	-0.00	0.00	c_{tq}^1	[0.3
ctd8	2.98	0.00	0.00	-0.00	-0.00	0.00	-0.00	0.00	0.00	0.57	0.45	0.00	-0.00	-0.00	0.17	-0.00	c_{Qu}^1	
ctg	146.04	-0.00	-0.00	0.00	0.63	-0.00	0.00	0.24	0.00	0.45	25.84	0.00	0.99	0.62	0.45	1.05	$\begin{vmatrix} c_{Qd} \\ c_{Qa}^{1,1} \end{vmatrix}$	[-0.1]
ctq1	0.00	0.00	0.00	0.39	-0.00	0.00	1.79	-0.00	0.00	0.00	0.00	6.56	-0.00	0.00	-0.00	-0.00	$c_{Qq}^{1,3}$	[1.9
cqq81	6.57	-0.00	0.00	-0.00	-0.00	-0.00	-0.00	0.95	0.00	-0.00	0.99	-0.00	1.30	-0.00	-0.00	0.40	c^8_{QQ}	0.05
cqu8	4.13	0.00	0.00	-0.00	0.24	-0.00	-0.00	-0.00	-0.00	-0.00	0.62	0.00	-0.00	0.89	0.00	-0.00	c_{Qt}^8	0.058
cqd8	2.99	0.00	0.00	-0.00	-0.00	0.00	-0.00	-0.00	-0.00	0.17	0.45	-0.00	-0.00	0.00	0.57	0.00	c_{QQ}^1	[-0.1
ctq8	7.02	0.00	0.00	0.00	-0.00	0.00	-0.00	0.09	0.00	-0.00	1.05	-0.00	0.40	-0.00	0.00	1.46	c_{Qt}^1	[-0.06
																	c_{tt}^{1}	

At LO good agreement between the cross-sections obtained trough reweighting and the expected ones.

• Process: $t\bar{t}$

Model: SMEFT@NLO

• Operators:

$$\begin{split} O_{qq}^{1(ijkl)} &= (\bar{q}_{i}\gamma^{\mu}q_{j})(\bar{q}_{k}\gamma_{\mu}q_{l}), \\ O_{qq}^{3(ijkl)} &= (\bar{q}_{i}\gamma^{\mu}\tau^{I}q_{j})(\bar{q}_{k}\gamma_{\mu}\tau^{I}q_{l}), \\ O_{qu}^{1(ijkl)} &= (\bar{q}_{i}\gamma^{\mu}q_{j})(\bar{u}_{k}\gamma_{\mu}u_{l}), \\ O_{qu}^{8(ijkl)} &= (\bar{q}_{i}\gamma^{\mu}T^{A}q_{j})(\bar{u}_{k}\gamma_{\mu}T^{A}u_{l}), \\ O_{qd}^{1(ijkl)} &= (\bar{q}_{i}\gamma^{\mu}q_{j})(\bar{d}_{k}\gamma_{\mu}d_{l}), \\ O_{qd}^{8(ijkl)} &= (\bar{q}_{i}\gamma^{\mu}T^{A}q_{j})(\bar{d}_{k}\gamma_{\mu}u_{l}), \\ O_{uu}^{(ijkl)} &= (\bar{u}_{i}\gamma^{\mu}u_{j})(\bar{d}_{k}\gamma_{\mu}u_{l}), \\ O_{ud}^{1(ijkl)} &= (\bar{u}_{i}\gamma^{\mu}u_{j})(\bar{d}_{k}\gamma_{\mu}d_{l}), \\ O_{ud}^{8(ijkl)} &= (\bar{u}_{i}\gamma^{\mu}T^{A}u_{j})(\bar{d}_{k}\gamma_{\mu}T^{A}d_{l}), \\ ^{\ddagger}O_{quqd}^{8(ijkl)} &= (\bar{q}_{i}u_{j}) \varepsilon (\bar{q}_{k}d_{l}), \\ ^{\ddagger}O_{quqd}^{8(ijkl)} &= (\bar{q}_{i}T^{A}u_{j}) \varepsilon (\bar{q}_{k}T^{A}d_{l}), \end{split}$$

Alberto Belvedere

R. Goldouzian

Simulation of the 4-fermion EFT operators for the $t\bar{t}$ process with SMEFT@NLO using the reweighting.

SMEFT@NLO documentation

							$\mathcal{O}(\Lambda^{-2})$	$\mathcal{O}(\Lambda^{-}$	-4)
q1	cqq81	cqu8	cqd8	ctq8	c_i	LO	NLO	LO	NLO
.00	6.57	4.13	2.99	7.02	c_{tu}^8	$4.27^{+11\%}_{-9\%}$	$4.06^{+1\%}_{-3\%}$	$1.04^{+6\%}_{-5\%}$	$1.03^{+2\%}_{-2\%}$
.00	-0.00	0.00	0.00	0.00	c_{td}^8	$2.79^{+11\%}_{-9\%}$	$2.77^{+1\%}_{-3\%}$	$0.577^{+6\%}_{-5\%}$	$0.611^{+3\%}_{-2\%}$
.00	0.00	0.00	0.00	0.00	c_{tq}^8	$6.99^{+11\%}_{-9\%}$	$6.67^{+1\%}_{-3\%}$	$1.61^{+6\%}_{-5\%}$	$1.29^{+3\%}_{-2\%}$
.39	-0.00	-0.00	-0.00	0.00	$\begin{vmatrix} c_{Qu}^8 \\ 8 \end{vmatrix}$	$4.26^{+11\%}_{-9\%}$	$3.93^{+1\%}_{-4\%}$	$1.04^{+6\%}_{-5\%}$	$0.798^{+3\%}_{-3\%}$
00	-0.00	0.24	-0.00	-0.00	$\begin{vmatrix} c_{Qd}^{\circ}\\ 8.1 \end{vmatrix}$	$2.79^{+11\%}_{-9\%}$	$2.93^{+0.0}_{-1.0}$	$0.58^{+6\%}_{-5\%}$	$0.485^{+2\%}_{-2\%}$
.00	0.00	0.24	0.00	0.00	c_{Qq}	$6.99^{+2.96}_{-9\%}$	$6.82^{+1.0}_{-3.0}$	$1.61^{+5\%}_{-5\%}$	$1.69^{+3\%}_{-3\%}$
.00	-0.00	-0.00	0.00	0.00	$c_{Qq}^{s,s}$	$1.50^{+10\%}_{-9\%}$	$1.32^{+170}_{-3\%}$	$1.61^{+0.\%}_{-5\%}$	$1.57^{+2\%}_{-2\%}$
.79	-0.00	-0.00	-0.00	-0.00	c_{tu}^1	$[0.67^{+1\%}_{-1\%}]$	$-0.078(7)^{+31\%}_{-23\%} [0.41^{+13\%}_{-17\%}]$	$4.66^{+6\%}_{-5\%}$	$5.92^{+6\%}_{-5\%}$
.00	0.95	-0.00	-0.00	0.09	c_{td}^1	$[-0.21^{+1\%}_{-2\%}]$	$-0.306^{+30\%}_{-22\%} \left[-0.15^{+10\%}_{-13\%} \right]$	$2.62^{+6\%}_{-5\%}$	$3.46^{+5\%}_{-5\%}$
.00	0.00	-0.00	-0.00	0.00	c_{tq}^1	$[0.39^{+0\%}_{-1\%}]$	$-0.47^{+24\%}_{-18\%}$ $[0.50^{+3\%}_{-2\%}]$	$7.25^{+6\%}_{-5\%}$	$9.36^{+6\%}_{-5\%}$
.00	-0.00	-0.00	0.17	-0.00	c_{Qu}^1	$[0.33^{+0\%}_{-0\%}]$	$-0.359^{+23\%}_{-17\%} [0.57^{+6\%}_{-5\%}]$	$4.68^{+6\%}_{-5\%}$	$5.96^{+6\%}_{-5\%}$
					c_{Qd}^{1}	$\left[-0.11^{+0\%}_{-1\%}\right]$	$\left 0.023(6)^{+114\%}_{-75\%} \right \left[-0.19^{+6\%}_{-5\%} \right]$	$2.61^{+6\%}_{-5\%}$	$3.46^{+5\%}_{-5\%}$
.00	0.99	0.62	0.45	1.05	$c_{Qq}^{1,1}$	$[0.57^{+0\%}_{-1\%}]$	$\left -0.24^{+30\%}_{-22\%} \right \left[0.39^{+9\%}_{-12\%} \right]$	$7.25^{+6\%}_{-5\%}$	$9.34^{+5\%}_{-5\%}$
.56	-0.00	0.00	-0.00	-0.00	$c_{Qq}^{1,3}$	$[1.92^{+1\%}_{-1\%}]$	$0.088(7)^{+28\%}_{-20\%} \left[1.05^{+17\%}_{-22\%} \right]$	$7.25^{+6\%}_{-5\%}$	$9.32^{+5\%}_{-5\%}$
.00	1.30	-0.00	-0.00	0.40	c^8_{QQ}	$0.0586^{+27\%}_{-25\%}$	$0.125^{+10\%}_{-11\%}$	$0.00628^{+13\%}_{-16\%}$	$0.0133^{+7\%}_{-5\%}$
.00	-0.00	0.89	0.00	-0.00	c_{Qt}^8	$0.0583^{+27\%}_{-25\%}$	$-0.107(6)^{+40\%}_{-33\%}$	$0.00619^{+13\%}_{-16\%}$	$0.0118^{+8\%}_{-5\%}$
.00	-0.00	0.00	0.57	0.00	c_{QQ}^1	$[-0.11^{+15\%}_{-18\%}]$	$ \begin{array}{ c c c c c c c c } -0.039(4)^{+51\%}_{-33\%} & [-0.12^{+7\%}_{-5\%}] \end{array} $	$0.0282^{+13\%}_{-16\%}$	$0.0651^{+5\%}_{-6\%}$
.00	0.40	-0.00	0.00	1.46	c_{Qt}^1	$\left \left[-0.068^{+16\%}_{-18\%} \right] \right $	$-2.51_{-21\%}^{+29\%} \left[-0.12_{-6\%}^{+3\%} \right]$	$0.0283^{+13\%}_{-16\%}$	$0.066^{+5\%}_{-6\%}$
					c_{tt}^1	×	$0.215^{+23\%}_{-18\%}$	×	×

Reweighting for *tt*

NLO simulation

																				$\mathcal{O}(\Lambda^{-2})$	0 (
		sm	ctu1	cqd1	cqq13	ctu8	cqu1	cqq11	cqq83	ctd1	ctd8	ctg	ctq1	cqq81	cqu8	cqd8	ctq8	c_i	LO	NLO	LO
`	sm	714.43	-1.97	0.92	-0.83	4.06	1.46	-3.11	1.28	-1.15	2.83	167.68	2.38	6.84	2.30	1.77	4.03	c_{tu}^8	$4.27^{+11\%}_{-9\%}$	$4.06^{+1\%}_{-3\%}$	$1.04^{+6\%}_{-5\%}$
)	ctu1	-1.97	10.87	-0.00	-0.00	-1.67	1.62	-0.00	-0.00	-0.00	0.00	-0.24	0.00	-0.00	-0.01	-0.00	0.00	c_{td}^8	$2.79^{+11\%}_{-9\%}$	$2.77^{+1\%}_{-3\%}$	$0.577^{+6\%}_{-5\%}$
	cad1	0.92	-0.00	2.67	0.00	0.00	-0.00	0.00	0.00	1.07	-0.01	0.11	0.00	-0.00	-0.00	0.90	-0.00	c_{tq}^8	$6.99^{+11\%}_{-9\%}$	$6.67^{+1\%}_{-3\%}$	$1.61^{+6\%}_{-5\%}$
	oqui	0.02	0.00	2.01		0.00	0.00	0.00	0.50		0.01	0.11	0.00	0.00	0.00	0.00	0.00	c_{Qu}^8	$4.26^{+11\%}_{-9\%}$	$3.93^{+1\%}_{-4\%}$	$1.04^{+6\%}_{-5\%}$
	cqq13	-0.83	-0.00	0.00	17.28	-0.00	0.00	8.92	-2.50	0.00	0.00	-0.10	0.56	-0.83	0.00	-0.00	-0.01	c_{Qd}^8	$2.79^{+11\%}_{-9\%}$	$2.93^{+0\%}_{-1\%}$	$0.58^{+6\%}_{-5\%}$
	ctu8	4.06	-1.67	0.00	-0.00	0.97	-0.01	-0.00	-0.00	0.00	0.00	0.58	0.00	-0.00	0.21	-0.00	-0.00	$c^{8,1}_{Qq}$	$6.99^{+11\%}_{-9\%}$	$6.82^{+1\%}_{-3\%}$	$1.61^{+6\%}_{-5\%}$
	cqu1	1.46	1.62	-0.00	0.00	-0.01	4.34	-0.00	-0.00	0.00	-0.00	0.17	0.00	-0.00	1.49	0.00	0.00	$c^{8,3}_{Qq}$	$1.50^{+10\%}_{-9\%}$	$1.32^{+1\%}_{-3\%}$	$1.61^{+6\%}_{-5\%}$
	cqq11	-3.11	-0.00	0.00	8.92	-0.00	-0.00	17.28	-0.83	-0.00	-0.00	-0.38	2.68	-2.50	0.00	-0.00	-0.02	c_{tu}^1	$[0.67^{+1\%}_{-1\%}]$	$-0.078(7)^{+31\%}_{-23\%}$ $[0.41^{+13\%}_{-17\%}]$	$4.66^{+6\%}_{-5\%}$
	cqq83	1.28	-0.00	0.00	-2.50	-0.00	-0.00	-0.83	1.53	-0.00	0.00	0.18	-0.01	0.81	0.00	0.00	0.06	c_{td}^1	$[-0.21^{+1\%}_{-2\%}]$	$-0.306^{+30\%}_{-22\%}$ $[-0.15^{+10\%}_{-13\%}]$	$2.62^{+6\%}_{-5\%}$
	ctd1	-1.15	-0.00	1.07	0.00	0.00	0.00	-0.00	-0.00	6.48	-0.84	-0.14	0.00	-0.00	0.00	-0.01	-0.00	c_{tq}^1	$[0.39^{+0\%}_{-1\%}]$	$-0.47^{+24\%}_{-18\%} [0.50^{+3\%}_{-2\%}]$	7.25 $^{+6\%}_{-5\%}$
	otd9	2.83	0.00	-0.01	0.00	0.00	-0.00	-0.00	0.00	-0.84	0.58	0.40	-0.00	0.00	0.00	0 15	0.00	c_{Qu}^1	$[0.33^{+0\%}_{-0\%}]$	$-0.359^{+23\%}_{-17\%}$ $[0.57^{+6\%}_{-5\%}]$	$4.68^{+6\%}_{-5\%}$
	Club	2.05	0.00	-0.01	0.00	0.00	-0.00	-0.00	0.00	-0.04	0.56	0.40	-0.00	0.00	0.00	0.15	0.00	c_{Qd}^1	$[-0.11^{+0\%}_{-1\%}]$	$0.023(6)^{+114\%}_{-75\%} \ [-0.19^{+6\%}_{-5\%}]$	$2.61^{+6\%}_{-5\%}$
	ctg	167.68	-0.24	0.11	-0.10	0.58	0.17	-0.38	0.18	-0.14	0.40	36.54	0.28	0.98	0.37	0.28	0.64	$\left c_{Qq}^{1,1} ight $	$[0.57^{+0\%}_{-1\%}]$	$ -0.24_{-22\%}^{+30\%} \left \begin{array}{c} [0.39_{-12\%}^{+9\%}] \end{array} \right $	7.25 $^{+6\%}_{-5\%}$
	ctq1	2.38	0.00	0.00	0.56	0.00	0.00	2.68	-0.01	0.00	-0.00	0.28	6.97	-0.02	-0.00	0.00	2.39	$c_{Qq}^{1,3}$	$[1.92^{+1\%}_{-1\%}]$	$0.088(7)^{+28\%}_{-20\%} \left[1.05^{+17\%}_{-22\%} \right]$	7.25 $^{+6\%}_{-5\%}$
	cqq81	6.84	-0.00	-0.00	-0.83	-0.00	-0.00	-2.50	0.81	-0.00	0.00	0.98	-0.02	1.53	-0.00	-0.00	0.35	c^8_{QQ}	$0.0586^{+27\%}_{-25\%}$	$0.125^{+10\%}_{-11\%}$	0.00628^{+13}_{-16}
	cqu8	2.30	-0.01	-0.00	0.00	0.21	1.49	0.00	0.00	0.00	0.00	0.37	-0.00	-0.00	0.14	0.00	-0.00	c_{Qt}^8	$0.0583^{+27\%}_{-25\%}$	$-0.107(6)^{+40\%}_{-33\%}$	0.00619^{+13}_{-16}
	cqd8	1.77	-0.00	0.90	-0.00	-0.00	0.00	-0.00	0.00	-0.01	0.15	0.28	0.00	-0.00	0.00	0.12	-0.00	c_{QQ}^1	$[-0.11^{+15\%}_{-18\%}]$	$ \left \begin{array}{c} -0.039(4)^{+51\%}_{-33\%} \right \left[-0.12^{+7\%}_{-5\%} \right] $	0.0282^{+13}_{-16}
	cta8	4.03	0.00	-0.00	-0.01	-0.00	0.00	-0.02	0.06	-0.00	0.00	0.64	2.39	0.35	-0.00	-0.00	0.25	$\begin{vmatrix} c_{Qt}^1 \end{vmatrix}$	$[-0.068^{+16\%}_{-18\%}]$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.0283^{+13}_{-16}
																		c_{tt}^{1}	×	$0.215^{+23\%}_{-1.0\%}$	× ×

Disagreement reported to MadGraph authors. Bug in the reweighting in MGv3.x, it should have been solved in MGv3.5.1.

- Process: $t\bar{t}$
- Model: SMEFT@NLC
- Operators:

$$\begin{split} &O_{qq}^{1(ijkl)} = (\bar{q}_i \gamma^{\mu} q_j) (\bar{q}_k \gamma_{\mu} q_l), \\ &O_{qq}^{3(ijkl)} = (\bar{q}_i \gamma^{\mu} \tau^I q_j) (\bar{q}_k \gamma_{\mu} \tau^I q_l), \\ &O_{qu}^{1(ijkl)} = (\bar{q}_i \gamma^{\mu} q_j) (\bar{u}_k \gamma_{\mu} u_l), \\ &O_{qu}^{8(ijkl)} = (\bar{q}_i \gamma^{\mu} T^A q_j) (\bar{u}_k \gamma_{\mu} T^A u_l), \\ &O_{qd}^{1(ijkl)} = (\bar{q}_i \gamma^{\mu} q_j) (\bar{d}_k \gamma_{\mu} d_l), \\ &O_{qd}^{8(ijkl)} = (\bar{q}_i \gamma^{\mu} T^A q_j) (\bar{d}_k \gamma_{\mu} T^A d_l), \\ &O_{uu}^{1(ijkl)} = (\bar{u}_i \gamma^{\mu} u_j) (\bar{d}_k \gamma_{\mu} d_l), \\ &O_{ud}^{1(ijkl)} = (\bar{u}_i \gamma^{\mu} T^A u_j) (\bar{d}_k \gamma_{\mu} d_l), \\ &O_{ud}^{8(ijkl)} = (\bar{u}_i \gamma^{\mu} T^A u_j) (\bar{d}_k \gamma_{\mu} T^A d_l), \\ ^{\ddagger} O_{quqd}^{8(ijkl)} = (\bar{q}_i u_j) \varepsilon (\bar{q}_k d_l), \\ ^{\ddagger} O_{quqd}^{8(ijkl)} = (\bar{q}_i T^A u_j) \varepsilon (\bar{q}_k T^A d_l), \end{split}$$

R. Goldouzian

Simulation of the 4-fermion EFT operators for the $t\bar{t}$ process with SMEFT@NLO using the reweighting.

SMEFT@NLO documenta

9	•							
ิล	tion							
۸-	-4)							
	NLO							
	$1.03^{+2\%}_{-2\%}$							
	$0.611^{+3\%}_{-2\%}$							
	$1.29^{+3\%}_{-2\%}$							
	$0.798^{+3\%}_{-3\%}$							
	$0.485^{+2\%}_{-2\%}$							
	$1.69^{+3\%}_{-3\%}$							
	$1.57^{+2\%}_{-2\%}$							
	$5.92^{+6\%}_{-5\%}$							
	$3.46^{+5\%}_{-5\%}$							
	$9.36^{+6\%}_{-5\%}$							
	$5.96^{+6\%}_{-5\%}$							
	$3.46^{+5\%}_{-5\%}$							
	$9.34^{+5\%}_{-5\%}$							
	$9.32^{+5\%}_{-5\%}$							
76 76	$0.0133^{+7\%}_{-5\%}$							
76 76	$0.0118^{+8\%}_{-5\%}$							
0	$0.0651^{+5\%}_{-6\%}$							
6	$0.066^{+5\%}_{-6\%}$							
	×							

Reweighting for *ttZ*

Alberto Belvedere

A. Belvedere

LO+1jet

NLO

Reweighting for *ttZ*

A. Belvedere

LO+1jet

NLO

Helicity reweighting in *ttZ*

- Model: Dim6top
- Operator: \mathcal{O}_{tZ}

Arbitrary units 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01

S. S. Cruz

- Helicity-aware reweighting:
- Helicity-ignorant reweighting:

$$W_{new} = |\mathcal{M}_h^{new}|^2 / \mathcal{M}_h^{old}|^2 \cdot u$$

$$W_{new} = |\sum_{h} \mathcal{M}_{h}^{new}|^{2} / \sum_{h} \mathcal{M}_{h}^{old}|^{2}$$

Helicity configuration

Helicity reweighting in *ttZ*

- MadSpin computes the matrix element at the reference point.
- It can't infer spin correlation of the decay products at another point.

Good agreement when reweighting is performed after top and Z decay.

Alberto Belvedere

S. S. Cruz

Reweighting in VBF Higgs production

Good agreement among direct, separate and reweighted distributions.

S. Chatterjee & J.Dickinson

Reweighting in VBF Higgs production

Good agreement among direct, separate and reweighted distributions.

S. Chatterjee & J.Dickinson

Triboson processes

- Model: SMEFTsim
- Operator: \mathcal{O}_W

A careful choice of the scale is needed to correctly simulate the EFT contribution separately.

S. Bhattacharya & Triboson team

Post-mortem reweighting

Possibility to reuse existing simulated SM samples with large statistics for EFT analyses calculating event weights for specific EFT points.

• Inputs: momenta and spin of initial and final state particles.

• **Restrictions**:

- Baseline and EFT sample must have same initial and final state.
- Phase space well covered by the SM sample.
- Implemented in MG5 at LO.
- Tested on $t\bar{t}$ process and \mathcal{O}_{tG} operator using dim6top.

L. Jeppe & A. Grohsjean

16

Summary

An overview of the LHC EFT prediction note content has been presented.

What did we learn?

- Helicity-ignorant reweighting does a great job in sampling the (B)SM phase space but it's not able to reproduce specific helicity configurations.
- MadSpin computes the matrix element at the reference point but can't infer spin **correlation** of the decay products at another point.
- The choice of the **scale** is crucial when producing separate simulations predictions.
- It is possible to add EFT effects to simulated samples at LO.

Residual discrepancies that need further investigations:

- **Discrepancy** at high energy in the M_{WWW} distribution.
- Significant fluctuations in the tail of few reweighting distributions.

Conclusions

The most important aspects of **EFT prediction simulation** are covered in the note. Helicity ignorant and aware reweighting, NLO reweighting, separated sample method, scale choice and post-mortem reweighting.

The selected **benchmark processes** cover most of the LHC physics program. Top physics, Higgs physics, vector boson fusion and multi boson processes.

Next steps:

1) Authors + editors meeting to finalize draft text. 2) Invite theory colleagues for contributions & scrutiny of the draft.

Alberto Belvedere

Alberto Belvedere

Reweighting in ZH

S. Banerjee, A. Calandri, S. Chatterjee, F. Glessgen, N. Smith, V. Perovic

20

Reweighting in ZH

S. Banerjee, A. Calandri, S. Chatterjee, F. Glessgen, N. Smith, V. Perovic

Reweighting in VBF Higgs production

Good agreement among direct, separate and reweighted distributions.

S. Chatterjee & J.Dickinson

Reweighting in VBF Higgs production

Good agreement among direct, separate and reweighted distributions.

S. Chatterjee & J.Dickinson

