

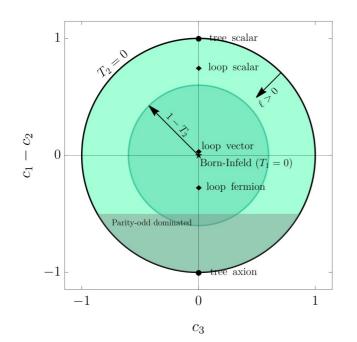
$$\mathcal{L} = -(FF) + c_1(FF)^2 + c_2(F\widetilde{F})^2 + c_3(FF)(F\widetilde{F}) + \dots$$

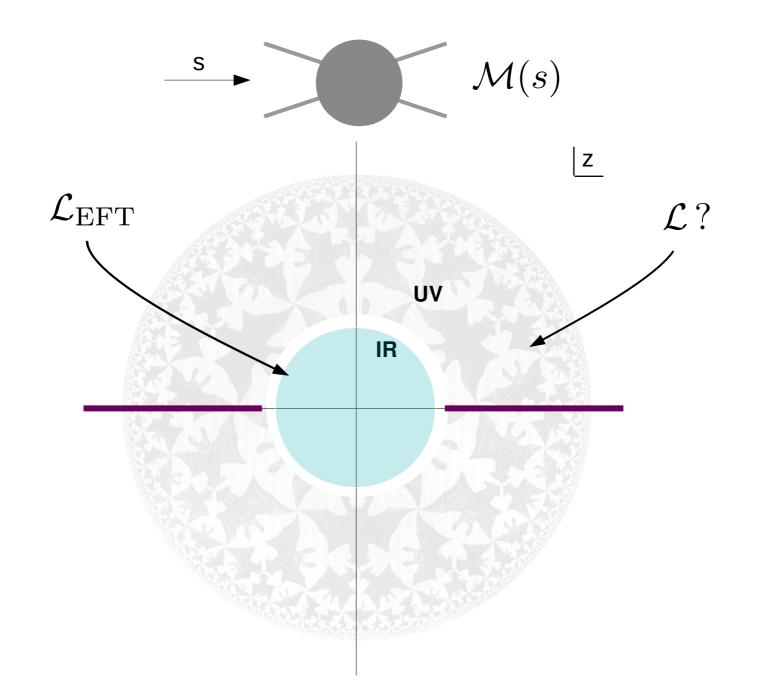
$$(FF) \equiv \frac{1}{4}F_{\mu\nu}F_{\mu\nu} \qquad (F\widetilde{F}) = \frac{1}{4}F_{\mu\nu}\widetilde{F}_{\mu\nu}$$

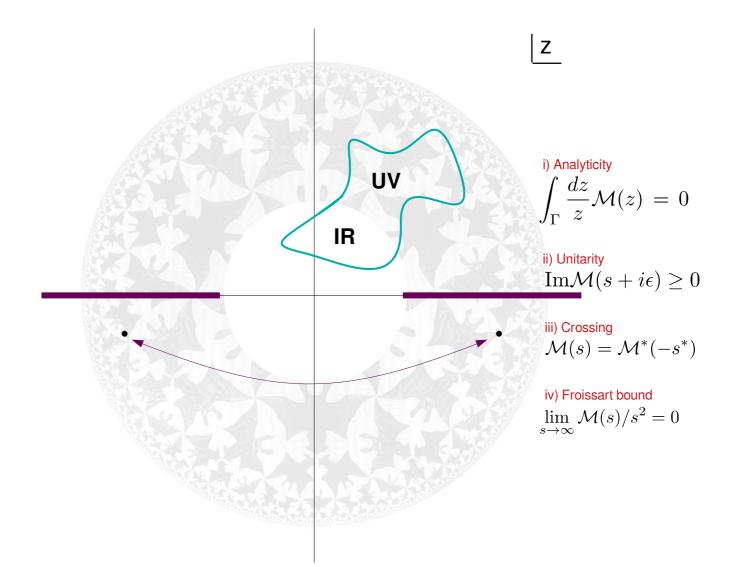
Consistent UV completion only if $c_1 > 0$, $c_2 > 0$, $c_1c_2 - c_3^2 > 0$

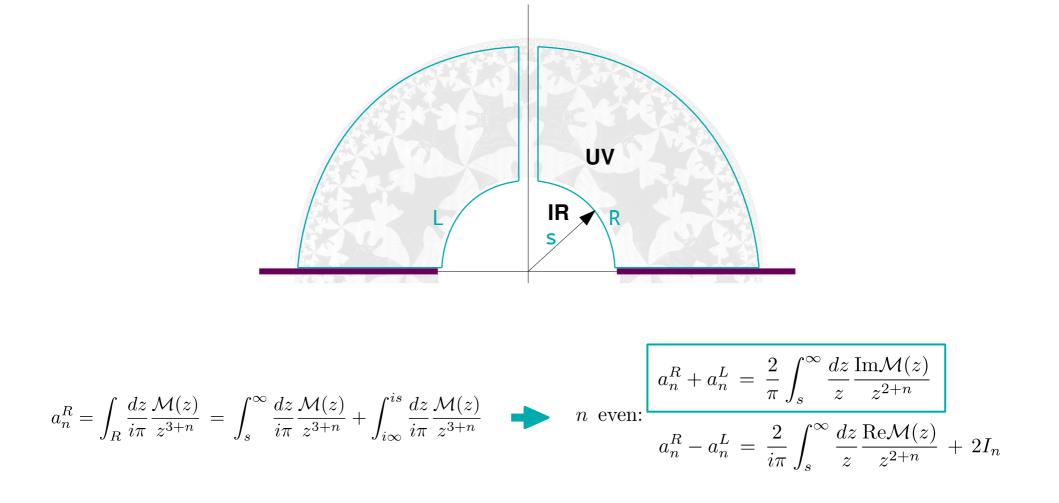
"Positivity" is a map between the IR and the UV.

$$c_1 > 0$$
, $c_2 > 0$, $c_1 c_2 - c_3^2 > 0$



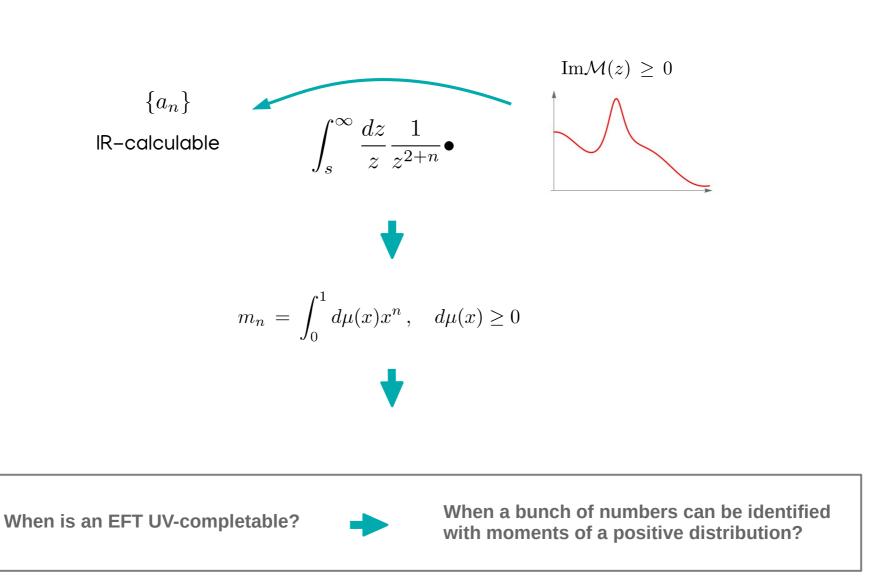






Bellazzini, Elias-Miro, Rattazzi, MR, Riva '20

$$a_n^R + a_n^L = \frac{2}{\pi} \int_s^\infty \frac{dz}{z} \frac{\mathrm{Im}\mathcal{M}(z)}{z^{2+n}}$$

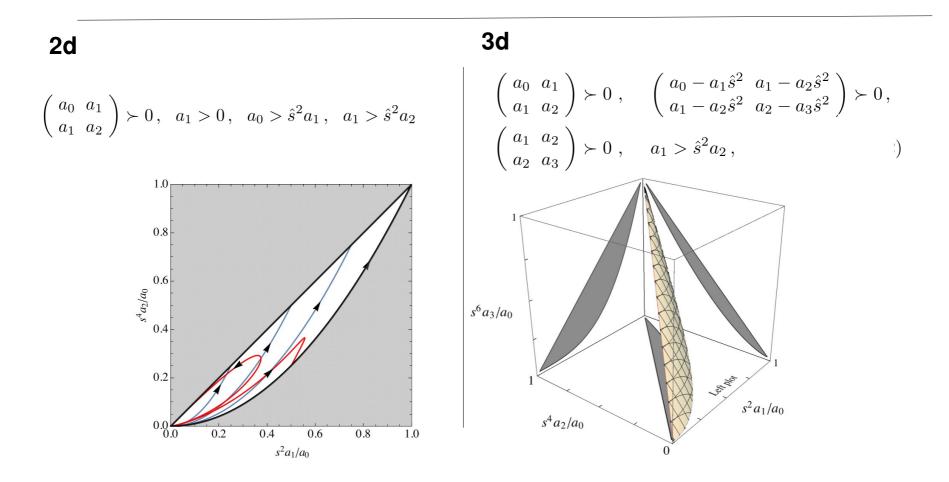


When can a bunch of numbers be identified with moments of a positive distribution?

 $\{a_0, a_1, \ldots\}$ moments of a positive distribution in [0,1] iff

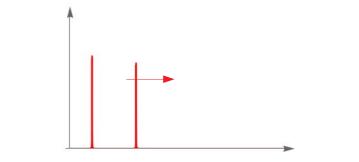
$$\begin{pmatrix} a_0 & a_1 & \dots & a_n \\ a_1 & a_2 & & & \\ \dots & \ddots & \vdots \\ a_n & \dots & a_{2n} \end{pmatrix} \succ 0$$

$$\begin{pmatrix} a_0 - a_1 & a_1 - a_2 & \dots & a_n - a_{n+1} \\ a_1 - a_2 & a_2 - a_3 & & \\ \dots & \ddots & \vdots \\ a_n - a_{n+1} & \dots & a_{2n} - a_{2n+1} \end{pmatrix} \succ 0$$



Understanding of the boundary = Understanding of the entire space

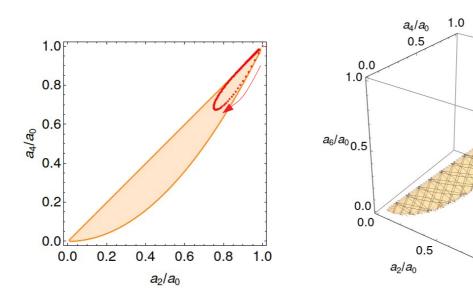
Boundary of n-dimensional space given by (n-1)-particles

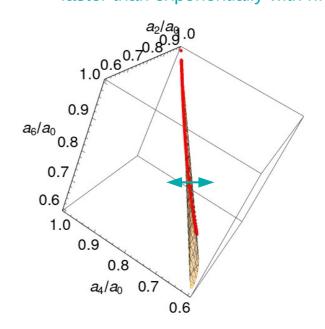


Arcs from two narrow resonances

1.0

Space of arcs shrinks faster than exponentially with n!

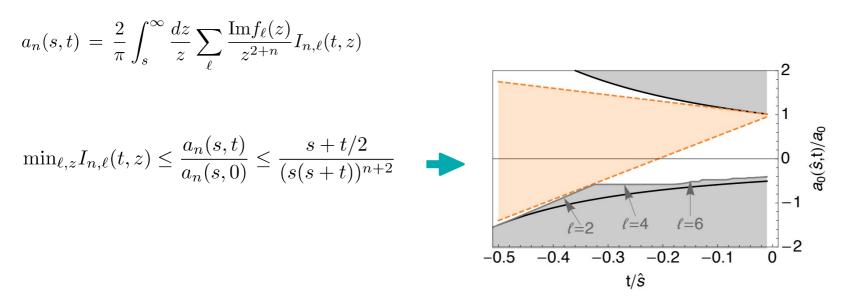




Finite t

Arcs at finite t get a t- and I- dependent kernel

 $a_n(s,t) = c_2 - tc_3 + \dots$



Upper bound on the arc is t-dependent but lower bound is t- and I- dependent.

but lower bound from finite t, at the intersection of I=2 and I=4 partial waves

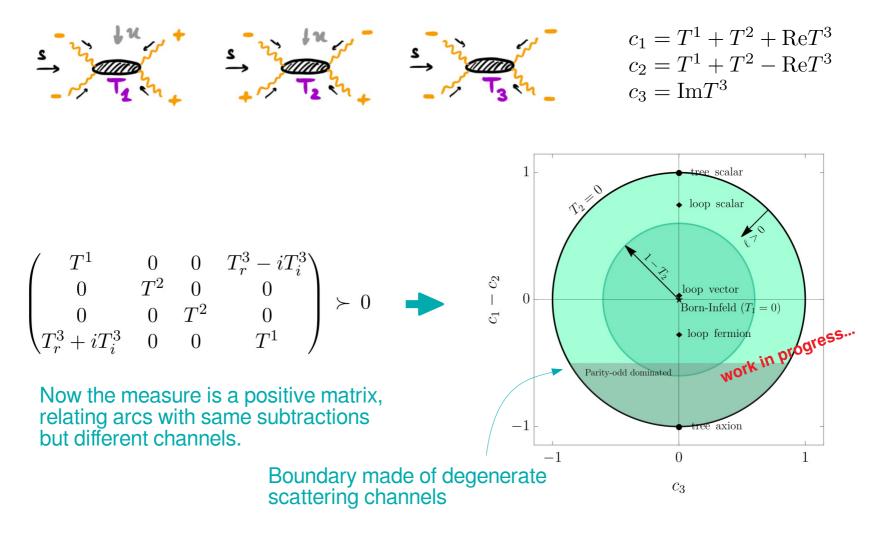
Multichannel EFTs

Example, a U(1) vector:

Remmen, Rodd '19 Li, Xu, Yang, Zhang, Zhou '21 Haring, Hebbar, Karateev, Meineri, Penedones '22 Durieux, Remmen, MR, Rodd 'WIP

$$\mathcal{L} = -(FF) + c_1(FF)^2 + c_2(F\widetilde{F})^2 + c_3(FF)(F\widetilde{F}) + \dots \qquad (FF) \equiv \frac{1}{4}F_{\mu\nu}F_{\mu\nu} \qquad (F\widetilde{F}) = \frac{1}{4}F_{\mu\nu}\widetilde{F}_{\mu\nu}$$

Three distinct scattering channels in the forward limit, and Wilson coeff. written as integrals of them:



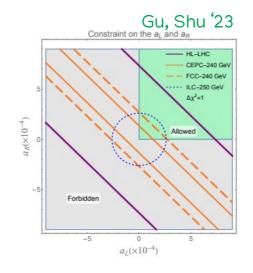
Dimension 8

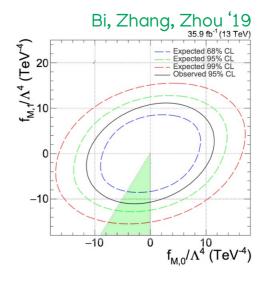
Generic positivity bounds apply only to dimension 8 operators.

Find observables sensitive to dimension 8:

- Neutral diboson (qq \rightarrow VV) [Bellazzini, Riva '18]
- Photon fusion (VV \rightarrow qq) [Gu, Shu '23]
- VBS [Bi, Zhang, Zhou '19]

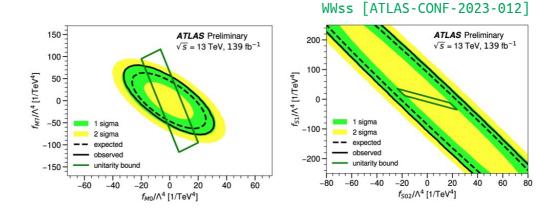
- "Soft fermions" [Bellazzini, Riva, Serra, Sgarlata '17]





VBS

- Theoretically relevant processes with rich phenomenology
- Positivity constraints worked out in [Bi, Zhang, Zhou '19]
- Should be included in the fits
- However...



Slide from Roberto Covarelli and Matteo Presilla

	Observed ($W^{\pm}W^{\pm}$) (TeV ⁻⁴)	Expected ($W^{\pm}W^{\pm}$) (TeV ⁻⁴)	Observed (WZ) (TeV ⁻⁴)	Expected (WZ) (TeV ⁻⁴)	Observed (TeV ⁻⁴)	Expected (TeV ⁻⁴)
$f_{\rm T0}/\Lambda^4$	[-0.28, 0.31]	[-0.36, 0.39]	[-0.62, 0.65]	[-0.82, 0.85]	[-0.25, 0.28]	[-0.35, 0.37]
f_{T1}/Λ^4	[-0.12, 0.15]	[-0.16, 0.19]	[-0.37, 0.41]	[-0.49, 0.55]	[-0.12, 0.14]	[-0.16, 0.19]
f_{T2}/Λ^4	[-0.38, 0.50]	[-0.50, 0.63]	[-1.0, 1.3]	[-1.4, 1.7]	[-0.35, 0.48]	[-0.49, 0.63]
f_{M0}/Λ^4	[-3.0, 3.2]	[-3.7, 3.8]	[-5.8, 5.8]	[-7.6, 7.6]	[-2.7, 2.9]	[-3.6, 3.7]
f_{M1}/Λ^4	[-4.7, 4.7]	[-5.4, 5.8]	[-8.2, 8.3]	[-11, 11]	[-4.1, 4.2]	[-5.2, 5.5]
f_{M6}/Λ^4	[-6.0, 6.5]	[-7.5, 7.6]	[-12, 12]	[-15, 15]	[-5.4, 5.8]	[-7.2, 7.3]
f_{M7}/Λ^4	[-6.7, 7.0]	[-8.3, 8.1]	[-10, 10]	[-14, 14]	[-5.7, 6.0]	[-7.8, 7.6]
$f_{\rm S0}/\Lambda^4$	[-6.0, 6.4]	[-6.0, 6.2]	[-19, 19]	[-24, 24]	[-5.7, 6.1]	[-5.9, 6.2]
$f_{\rm S1}/\Lambda^4$	[-18, 19]	[-18, 19]	[-30, 30]	[-38, 39]	[-16, 17]	[-18, 18]
		Same limit	s but out	5100 DIA		

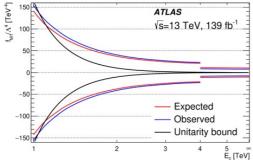
Same limits but cutting on

unitarity violating phase space

	Observed ($W^{\pm}W^{\pm}$)	Expected (W [±] W [±])	Observed (WZ)	Expected (WZ)	Observed	Expected
	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})
$f_{\rm T0}/\Lambda^4$	[-1.5, 2.3]	[-2.1, 2.7]	[-1.6, 1.9]	[-2.0, 2.2]	[-1.1, 1.6]	[-1.6, 2.0]
f_{T1}/Λ^4	[-0.81, 1.2]	[-0.98, 1.4]	[-1.3, 1.5]	[-1.6, 1.8]	[-0.69, 0.97]	[-0.94, 1.3]
f_{T2}/Λ^4	[-2.1, 4.4]	[-2.7, 5.3]	[-2.7, 3.4]	[-4.4, 5.5]	[-1.6, 3.1]	[-2.3, 3.8]
$f_{\rm M0}/\Lambda^4$	[-13, 16]	[-19, 18]	[-16, 16]	[-19, 19]	[-11, 12]	[-15, 15]
$f_{\rm M1}/\Lambda^4$	[-20, 19]	[-22, 25]	[-19, 20]	[-23, 24]	[-15, 14]	[-18, 20]
f_{M6}/Λ^4	[-27, 32]	[-37, 37]	[-34, 33]	[-39, 39]	[-22, 25]	[-31, 30]
$f_{\rm M7}/\Lambda^4$	[-22, 24]	[-27, 25]	[-22, 22]	[-28, 28]	[-16, 18]	[-22, 21]
$f_{\rm S0}/\Lambda^4$	[-35, 36]	[-31, 31]	[-83, 85]	[-88, 91]	[-34, 35]	[-31, 31]
$f_{\rm S1}/\Lambda^4$	[-100, 120]	[-100, 110]	[-110, 110]	[-120, 130]	[-86, 99]	[-91, 97]

ATLAS √s=13 TeV, 139 fb⁻¹ 100

vvA [ATLAS-CONF-2023-024]

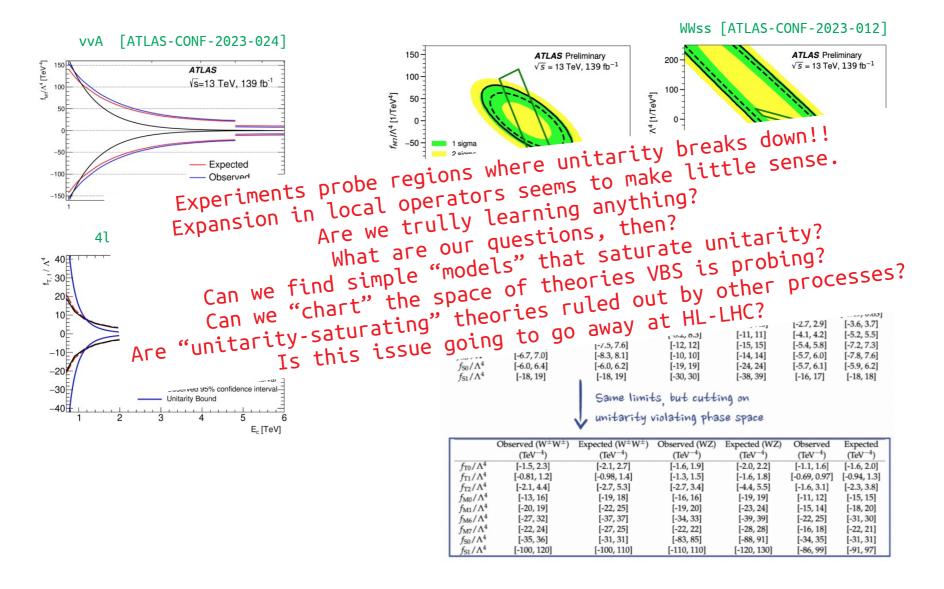


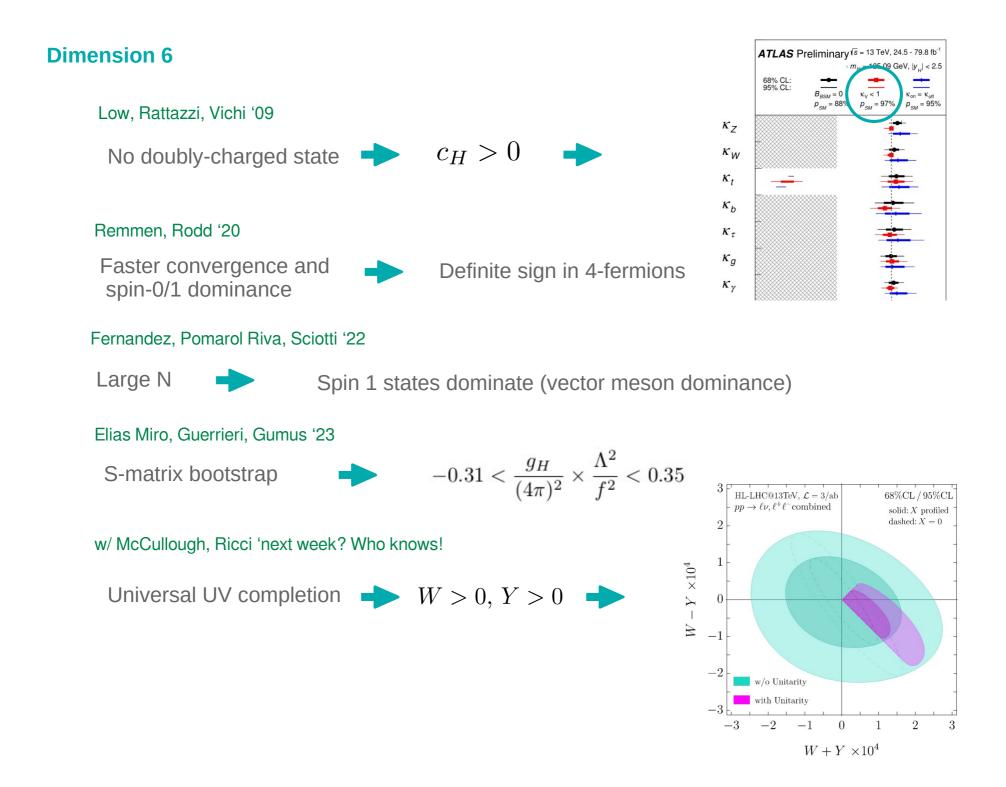
41 [ATLAS-CONF-2023-024]

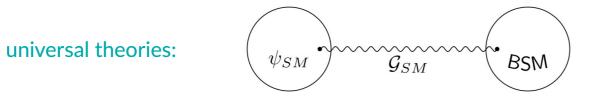


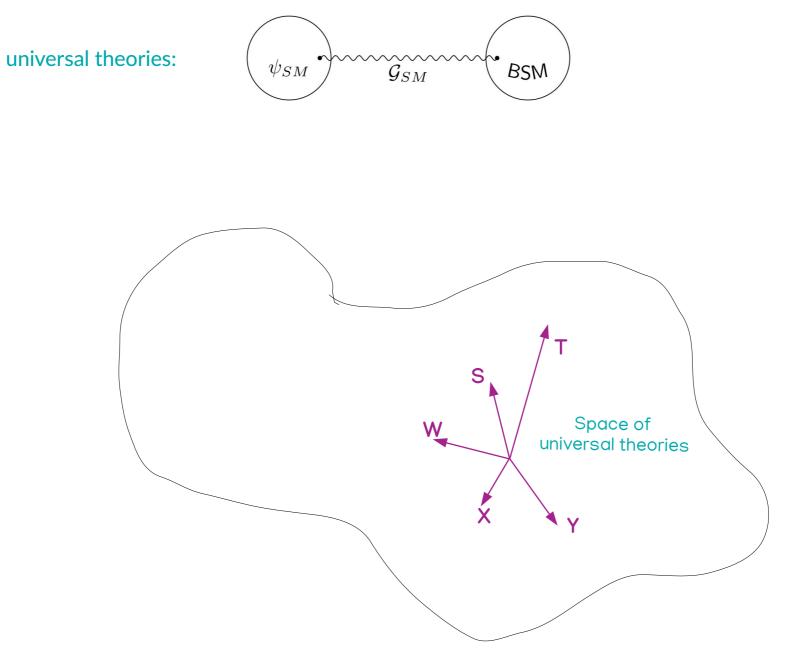
VBS

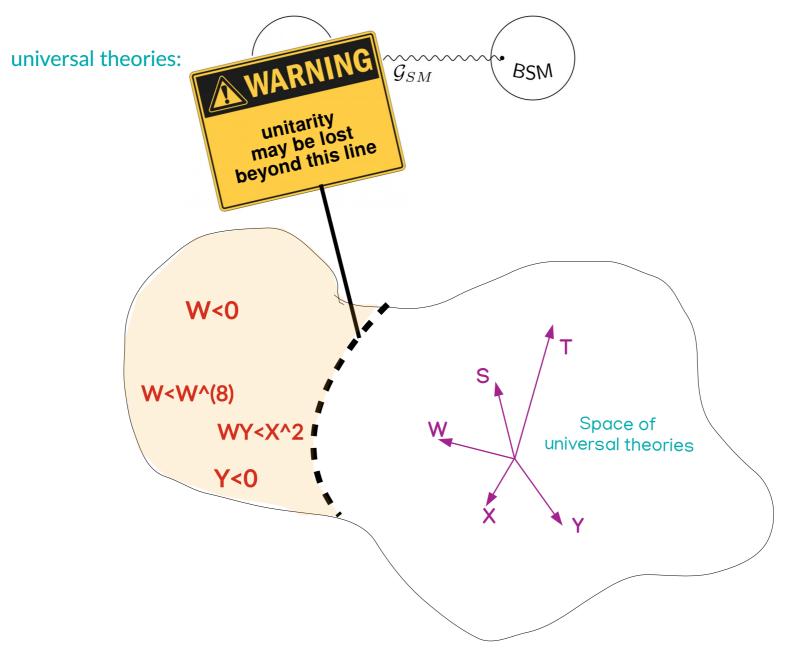
- Theoretically relevant processes with rich phenomenology
- Positivity constraints worked out in [Bi, Zhang, Zhou '19]
- Should be included in the fits
- However...

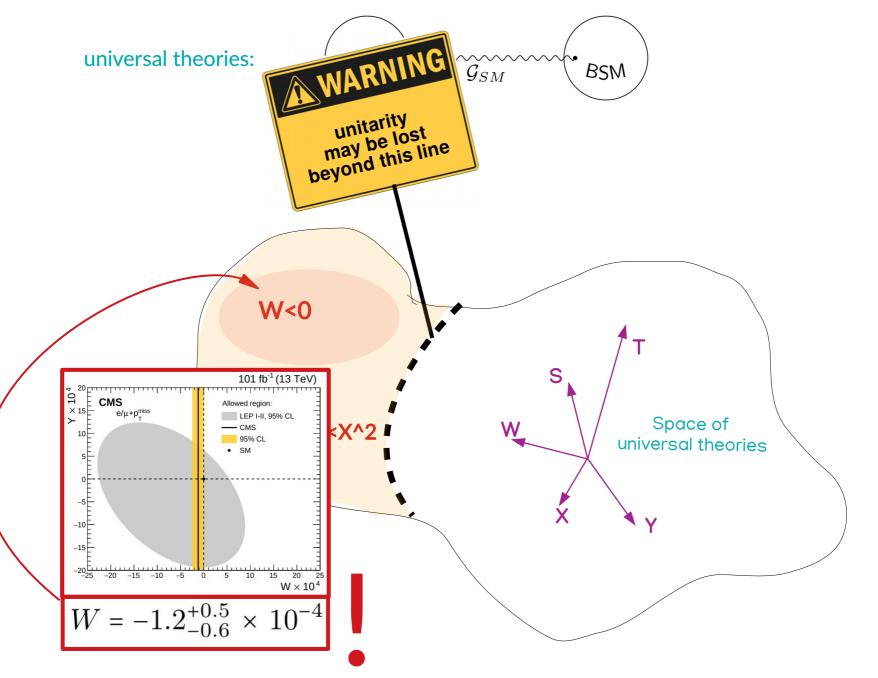


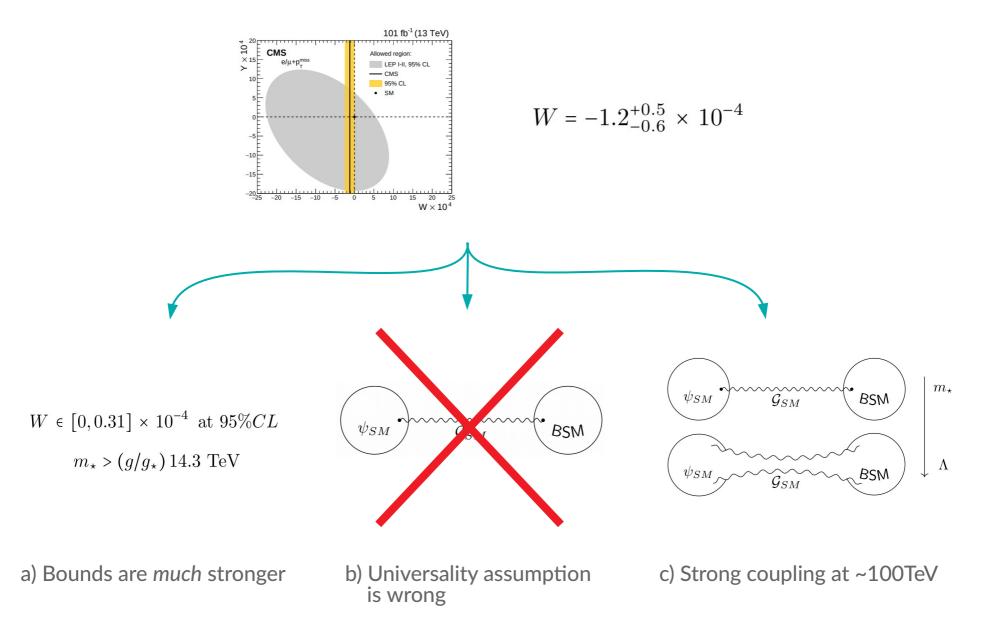






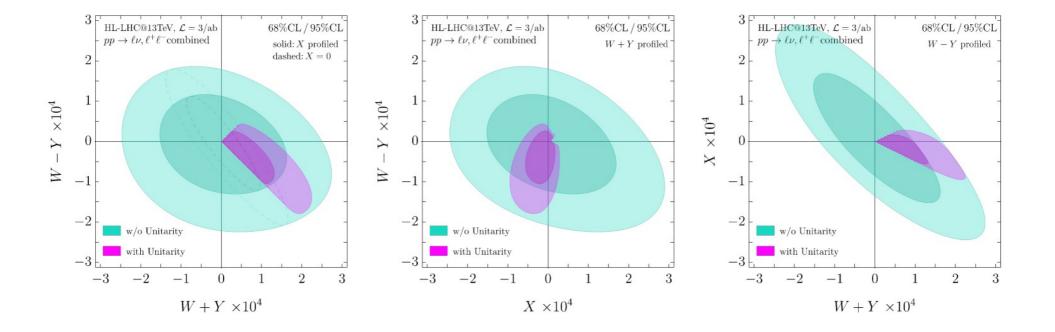






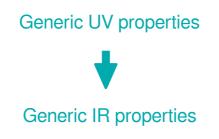
Unitarity constraints have a dramatic impact on the interpretation of Drell-Yan data

$$\bullet \quad W > 0 \quad Y > 0 \quad WY - X^2 > 0$$



Conclusions

Analyticity of amplitudes allows to connect UV and IR, therefore:



Tells us what is possible and what is not in the IR, and within what is possible, which IR features are mapped to which UV dynamics