Geometry of EFTs

Julie Pagès UC San Diego

6th General Meeting of the LHC EFT Working Group November 17, 2023

UC San Diego

Field redefinition invariance

We know physics is invariant under field redefinitions.

S-matrix elements are invariant (from LSZ formula) while correlation functions are not.

intermediate steps \Rightarrow different operator basis give same observables but not always easy to see.

i.e. scattering amplitudes, are covariant \rightarrow make observable invariance manifest.

-
- There is an ambiguity in our EFT Lagrangian description which makes this invariance at higher level unclear in
- The goal of (constant) *field-space geometry* is to write the Lagrangian in such a way that intermediate quantities,

Basis choice should not matter. For example, representations of the Goldstone are equivalent:

$$
\vec{\phi} = \begin{pmatrix} \varphi_1 \\ \varphi_2 \\ \varphi_3 \\ \nu + h \end{pmatrix}
$$

where

- field values \equiv coordinates on a Riemannian manifold
- = inner-product on the tangent space of the field manifold: metric • $g_{IJ}(\phi)$

- $=$ function on the field manifold • potential $V(\phi)$
- field redefinitions = coordinate transformations (without derivatives)

Julie Pagès — UCSD — Geometry of EFTs

 $D - V(\phi)$ + higher-derivative terms

 $ds^2 \equiv g_U(\phi) d\phi^I d\phi^J$

 $\phi^I \rightarrow \varphi^I(\phi)$

$$
\mathcal{L} = \frac{1}{2} g_{IJ}(\phi) (\partial_{\mu} \phi^I)(\partial^{\mu} \phi^J)
$$

Geometric interpretation

A scalar field theory can be written as: [Alonso, Jenkins, Manohar, 1605.03602]

SM scalar manifold is flat

Under a coordinate transformation, $\phi^I \rightarrow \varphi^I(\phi)$

• the derivative of the scalar transforms as a vector

$$
\partial_{\mu}\phi^{I} \rightarrow \left(\frac{\delta\phi^{I}}{\delta\phi^{J}}\right) \partial_{\mu}\phi^{J}
$$

• the metric transforms as a tensor

so
$$
\mathcal{L}_{kin} = \frac{1}{2} g_{IJ}(\phi) (\partial_{\mu} \phi^I)(\partial^{\mu} \phi^J)
$$
 is invariant.

Julie Pagès — $UCSD$ — Geometry of EFTs

$$
g_{IJ} \rightarrow \left(\frac{\delta \phi^K}{\delta \varphi^I}\right) \left(\frac{\delta \phi^L}{\delta \varphi^J}\right) g_{KL}
$$

Geometric interpretation

Advantages of the geometric description for EFTs :

• Resums higher dimensional operators

$$
\mathcal{L}_{O(N) \text{ EFT}} \supset \frac{1}{2} \underbrace{(\delta_{IJ} + C_E(\phi \cdot \mathbf{g}))}_{g_I}
$$

 \Rightarrow amplitudes and RGE in terms of geometric objects contain the full tower \rightarrow precision see Anke's talk

- Same geometric description can represent different EFTs (for example HEFT or SMEFT) \Rightarrow unify picture and define more relevant quantities than Wilson coefficients \rightarrow structure derive EFT cutoff [Cohen, Craig, Lu, Sutherland, 2108.03240]
- Covariant amplitudes and RGE \Rightarrow more compact expressions \rightarrow efficiency

 $\frac{1}{2} \left(\delta_{IJ} + C_E (\phi \cdot \phi) \delta_{IJ} + C_2 \phi_I \phi_J \right) (\partial_\mu \phi^I) (\partial^\mu \phi^J) - V(\phi)$

 $g_{IJ}(\phi)$

see Andrea

Going from SMEFT-form to HEFT-form is always possible. Going from HEFT-form to SMEFT-form is not.

 \Rightarrow SMEFT vs HEFT = analytic vs non-analytic Lagrangian in H [Falkowski, Rattazzi, 1902.05936]

Higgs and Goldstones are embedded into a doublet $H \rightarrow LH$

Usually: linear realization $H =$ 1 $\frac{1}{2}$ $iG_1 + G_2$ $v + h + iG_3$

Higgs is a singlet and Goldstones $h \rightarrow h$ $U \rightarrow LUR^{\dagger}$

Some non-analyticities can be removed by field redefinitions.

Julie Pagès — $UCSD$ — Geometry of EFTs

SMEFT vs HEFT from non-analyticity

SMEFT HEFT

see All Things EFT talk by Xiaochuan Lu

Usually: nonlinear realization

$$
h, U = \exp\left(\frac{i\pi^a \tau^a}{\nu}\right)
$$

• same symmetry

• different field content

see Javier's talk

 $SU(2)_L \times U(1)_Y \to U(1)_Q$ $L \in SU(2)$ ^L, $R \in U(1)$ ^V

Julie Pagès — UCSD — Geometry of EFTs 7 /16

SMEFT vs HEFT from geometry

- there exist an $O(4)$ invariant fixed point h^* on the scalar manifold [Alonso, Jenkins, Manohar, 1605.03602]
- metric and potential are analytic at *h**

A HEFT can be written in SMEFT-form ⇔

[Cohen, Craig, Lu, Sutherland, 2008.08597]

Amplitudes from geometry

Higgs cross-sections, W_L scattering, S parameter measurements can tell us if scalar manifold is flat or curved. [Alonso, Jenkins, Manohar, 1511.00724]

Julie Pagès — UCSD — Geometry of EFTs 8/16

 \Rightarrow $\mathcal{A}(\phi_I \phi_J \rightarrow \phi_K \phi_I) = R_{IKJ} s + R_{IJKI} t$

Four-point amplitude depends on curvature. Five-point amplitude depends on covariant derivative of the curvature. …

Julie Pagès — UCSD — Geometry of EFTs 9 /16

RGE at one-loop

To obtain an algebraic formula for MS counterterms we use the background field method $\phi \rightarrow \phi + \eta$

With the covariant derivative $D_{\mu} \eta \equiv \partial_{\mu} \eta + N_{\mu} \eta$ and redefining X we have $\delta^2 \mathscr{L} =$ 1 2

Using naive dimensional analysis, the 't Hooft formula for one-loop counterterms is ['t Hooft, Nucl.Phys.B 62 (1973)]

 $(D_{\mu}\eta)^{T}(D^{\mu}\eta) +$ 1 2 *ηTXη*

at
$$
\mathcal{O}(\eta^2)
$$
:
\n
$$
\delta^2 \mathcal{L} = \frac{1}{2} (\partial_\mu \eta)^T (\partial^\mu \eta) + (\partial_\mu \eta)^T N^\mu \eta + \frac{1}{2} \eta^T X \eta
$$

where N^{μ} is antisymmetric without loss of generality and X is symmetric.

with
$$
Y_{\mu\nu} = [D_{\mu}, D_{\nu}]
$$

$$
\mathcal{L}_{\text{c.t.}}^{(1)} = \frac{1}{16\pi^2 \epsilon}
$$

Julie Pagès — UCSD — Geometry of EFTs 10/16

 \int_{a}^{μ} $(D_{\mu}\eta)^{a}\eta^{b}\eta^{c} + A_{ab}^{\mu\nu}$ $\int_{ab|c}^{\mu\nu} (D_{\mu}\eta)^{a} (D_{\nu}\eta)^{b} \eta^{c}$ *μ*_{*a*</sup>_{*bcd*}} $(D_\mu \eta)^a \eta^b \eta^c \eta^d + B^{\mu\nu}_{ab}$ *ab\cd*^{(*D_μη*)^{*a*}(*D_νη*)^{*b*}η^cη^{*d*}}

with 0, 1 or 2 insertions of $X/Y_{\mu\nu}$

RGE at two-loop

For two-loop we need the expansion of the Lagrangian in quantum fluctuations to

 $(n³)$: (η^4) :): $\delta^3 \mathcal{L} = A_{abc} \eta^a \eta^b \eta^c + A_{al}^\mu$): $\delta^4 \mathcal{L} = B_{abcd} \eta^a \eta^b \eta^c \eta^d + B_d^{\mu}$

where A and B are symmetric and the completely symmetric parts of A^{μ} and B^{μ} vanish.

The graphs to compute for the two-loop algebraic formula are

with 2 or 3 insertions of *X* / *Yμν*

Full results in [Jenkins, Manohar, Naterop, JP, 2308.06315]

Riemannian normal coordinates

Using cartesian coordinates, we find that counterterms are not covariant. The reason is that ϕ is a coordinate and does not transform as a tensor, but tangent vectors do.

$$
\phi^I \rightarrow \phi^I + \eta^I - \frac{1}{2} \Gamma^I_{JK} \eta^J \eta^K - \frac{1}{3!} \Gamma^I_{IJ} \eta^K
$$

Julie Pagès — $UCSD$ — Geometry of EFTs

Solution: use Riemannian normal coordinates (local coordinates obtained by applying the exponential map to the tangent space at \mathcal{P}_0 for the quantum fluctuation. 0

 $g_{IJ}(\mathscr{P}_0) = \delta_{IJ}$ $\Gamma^I_{IK}(\mathscr{P}_0) = 0$

⇒ expand Lagrangian in

Algebraic counterterm formulae were derived for renormalizable theories \Leftrightarrow for a flat field-space manifold. So we cannot apply them to our coordinates on the curved field-space manifold.

Solution: go to local inertial frames using vielbeins and apply formulae there.

$$
g_{IJ}(\phi) = e^a{}_I(\phi)e^b{}_J(\phi)\delta_{ab} \qquad (\mathcal{D}_{\mu}\eta)^I
$$

⇒ Since every indices are contracted, formulae are unchanged.

Julie Pagès — UCSD — Geometry of EFTs

 $I = e^I{}_a(\mathcal{D}_\mu \eta)$

a $R_{IJKL} = e^a{}_I e^b{}_J e^c{}_K e^d{}_L R_{abcd}$

Non-coordinate basis

- up to one-loop order
	- SMEFT bosonic sector to dim 8 [Helset, Jenkins, Manohar, 2212.03253]
	- SMEFT bosonic operators from a fermion loop to dim 8 [Assi, Helset, Manohar, JP, Shen, 2307.03187]

 \rightarrow agree with [Cao, Herzog, Melia, Nepveu, 2105.12742]

 \rightarrow agree with [Bijnens, Colangelo, Ecker, hep-ph/9907333]

Using this technique we computed the RGE for:

→ agree with [Chala, Guedes, Ramos, Santiago, 2106.05291] [Das Bakshi, Chala, Díaz-Carmona, Guedes, 2205.03301]

- **W** up to two-loop order Henkins, Manohar, Naterop, JP, 2310.19883]
	- \bullet $O(N)$ scalar EFT to dim 6
	- SMEFT scalar sector to dim 6 \rightarrow new!
	- χ PT to $\mathcal{O}(p^6)$) \longrightarrow

⇔ directly usable for dim 8

What remains

More RGEs

- full one-loop RGE for SMEFT at dim 8
	- ‣ mixed scalar-fermion loops
		- [Assi, Helset, JP, Shen, w.i.p]
	- **•** four-fermion operators
	- ‣ contributions to fermionic operators
	- ‣ mixed vector-fermion loops
- two-loop counterterm formula including fermions and gauge bosons
- **More derivatives**
	- operators with more than one derivative on each field
		- ‣ Lagrange spaces? [Craig, Lee, Lu, Sutherland, 2305.09722]
		- jet bundle geometry? [Alminawi, Brivio, Davighi, 2308.00017] [Craig, Lee, 2307.15742]
	- derivative field redefinition
		- on-shell covariance of amplitudes? [Cohen, Craig, Lu, Sutherland, 2202.06965]
		- geometry-kinematics duality? [Cheung, Helset, and Parra-Martinez, 2202.06972]
- **More applications**

Julie Pagès — UCSD — Geometry of EFTs 14/16

Summary:

- Field-space geometry offer an alternative, more basis-independent, description of EFTs
- Scattering amplitudes and RGE are covariant and easier to compute
- RGE calculations are easily generalizable to any EFT order

Future plans:

- Some formal developments needed to generalize to arbitrary EFTs
- Develop phenomenology studies with geometry

Thank you!

Gauge fields Fermions

Julie Pagès — UCSD — Geometry of EFTs 17/16

Beyond scalars

Vector-scalar field-space manifold Fermion-scalar field-space supermanifold (with Grassmann coordinates)

$$
\mathcal{L} = \frac{1}{2} h_{IJ}(\phi) (D_{\mu}\phi)^{I} (D^{\mu}\phi)^{J} - \frac{1}{4} g_{AB}(\phi) F_{\mu\nu}^{A} F^{B\mu\nu} + \frac{i}{2} k_{\bar{p}r} + \frac{i}{2} W^{B\mu\nu} - V(\phi)
$$

$$
\frac{i}{2}k_{\bar{p}r}(\phi)\left(\overline{\psi}^{\bar{p}}\gamma^{\mu}\overleftrightarrow{D}_{\mu}\psi^{r}\right)+i\omega_{\bar{p}rI}(\phi)(D_{\mu}\phi)^{I}(\overline{\psi}^{\bar{p}}\gamma^{\mu}\psi^{r})-\overline{\psi}^{\bar{p}}\mathcal{M}_{\bar{p}r}\psi^{r}+\overline{\psi}^{\bar{p}}\sigma_{\mu\nu}\mathcal{F}_{\bar{p}r}^{\mu\nu}(\phi,F)\psi^{r}
$$

$$
g_{ij} = \begin{pmatrix} h_{IJ} & 0 \\ 0 & \eta_{\mu_A\mu_B} g_{AB} \end{pmatrix} \qquad g_{ab} =
$$

$$
(D_{\mu}\phi)^{I} = \partial_{\mu}\phi^{I} + A_{\mu}^{B}t_{B}^{I}(\phi)
$$

Killing vectors

$$
g_{ab} = \begin{pmatrix} h_{IJ} & (\omega^- \overline{\psi})_{rI} & (\omega^+ \psi)_{\overline{r}I} \\ -(\omega^- \overline{\psi})_{pJ} & 0 & k_{\overline{r}p} \\ -(\omega^+ \psi)_{\overline{p}J} & -k_{\overline{p}r} & 0 \end{pmatrix} \omega^{\pm}_{\overline{p}rl} = \omega_{\overline{p}rl} \pm
$$

[Helset, Jenkins, Manohar, 2210.08000] [Assi, Helset, Manohar, JP, Shen, 2307.03187] [Finn, Karamitsos, Pilaftsis, 2006.05831]

A-type counterterms

$$
\mathcal{L}_{\text{c.t.}}^{(A,2)} = \frac{1}{(16\pi^2)^2} \Bigg[a_{1,1} D_{\mu} A_{abc} D_{\mu} A_{abc} + a_{2,1} A_{abc} X_{cd} A_{abd}
$$
\n
$$
+ a_{3,1} D_{\mu} A_{a|bc}^{\mu} A_{abd} X_{cd} + a_{3,2} A_{a|bc}^{\mu} D_{\mu} A_{abd} X_{cd} + a_{4,1} D_{\nu} A_{a|bc}^{\mu} A_{abd} Y_{cd}^{\mu} + a_{4,2} A_{a|bc}^{\mu}
$$
\n
$$
+ a_{5,1} D^2 A_{a|bc}^{\mu} D^2 A_{a|bc}^{\mu} + a_{5,2} D_{\alpha} D_{\mu} A_{a|bc}^{\mu} D_{\alpha} D_{\nu} A_{a|bc}^{\nu}
$$
\n
$$
+ a_{6,1} D^2 A_{a|bc}^{\mu} D^2 A_{a|bc}^{\mu} + a_{5,2} D^2 A_{c|ab}^{\mu} A_{d|ab}^{\mu} X_{cd} + a_{6,3} D_{\alpha} A_{a|bc}^{\mu} D_{\alpha} A_{a|bc}^{\mu} D_{\alpha} A_{a|bc}^{\mu} A_{cd}^{\nu} A_{cd}^{\nu}
$$
\n
$$
+ a_{6,5} D_{\mu} A_{a|bc}^{\mu} D_{\nu} A_{a|bd}^{\nu} X_{cd} + a_{6,6} D_{\mu} A_{a|ab}^{\mu} D_{\nu} A_{a|ab}^{\nu} X_{cd} + a_{6,7} D_{\nu} A_{a|bc}^{\mu} D_{\mu} A_{a|bd}^{\nu} X_{cd}
$$
\n
$$
+ a_{7,1} D_{\alpha} A_{a|bc}^{\mu} D_{\alpha} A_{a|bd}^{\nu} X_{cd} + a_{7,9} D_{\nu} A_{a|bd}^{\mu} X_{cd} + a_{6,10} D_{\nu} D_{\mu} A_{c|ab}^{\mu} A_{d|ab}^{\nu} X_{cd}
$$
\n
$$
+ a_{7,1} D_{\alpha} A_{a|bc}^{\mu} D_{\alpha} A_{a|bd}^{\nu} Y_{cd}^{\mu} + a_{7,5} D_{\mu} A_{a|bc}^{\mu
$$

Julie Pagès — UCSD — Geometry of EFTs

 $_{c}D_{\nu}A_{abd}Y_{cd}^{\mu\nu}$ $a_{2,1}=\frac{9}{2\epsilon^2}-\frac{9}{2\epsilon},$ $a_{1,1}=-\frac{3}{4\epsilon},$ ${}_1D_{\alpha}A^{\mu}_{c|ab}D_{\alpha}A^{\mu}_{d|ab}X_{cd} \stackrel{a_{3,1}=\frac{3}{2\epsilon^2}-\frac{15}{4\epsilon},}$ $a_{4,1}=-\frac{3}{2\epsilon^2}+\frac{7}{4\epsilon},$ $a_{3,2}=\frac{9}{2\epsilon^2}-\frac{9}{4\epsilon},$ $a_{4,2} = -\frac{3}{2\epsilon^2} - \frac{5}{4\epsilon},$ $a_{5,2} = -\frac{1}{48\epsilon},$ $a_{5,1}=\frac{1}{64\epsilon},$ $a_{6,1} = \frac{1}{36\epsilon^2} + \frac{25}{216\epsilon},$ $a_{6,3}=-\frac{5}{36\epsilon^2}+\frac{37}{216\epsilon},$ $a_{6,2} = \frac{13}{72 \epsilon^2} - \frac{107}{432 \epsilon},$ $a_{6,4}=\frac{2}{9\epsilon^2}-\frac{2}{27\epsilon},$ $a_{6,8} = \frac{13}{72\epsilon^2} - \frac{11}{432\epsilon},$ $a_{6,5}=\frac{1}{36\epsilon^2}-\frac{5}{216\epsilon},$ $a_{6,6}=-\frac{5}{72\epsilon^2}-\frac{65}{432\epsilon},\; \; \Big\vert$ $a_{6,7}=\frac{1}{36\epsilon^2}-\frac{5}{216\epsilon},$ ν $a_{6,9}=-\frac{1}{9\epsilon^2}+\frac{5}{54\epsilon},$ $a_{6,10} = \frac{1}{36\epsilon^2} - \frac{59}{216\epsilon},$ α $a_{7,2}=-\frac{13}{96\epsilon},$ $a_{7,1}=-\frac{1}{48\epsilon},$ $a_{7,3}=\frac{1}{18\epsilon^2}+\frac{1}{432\epsilon},$ α $a_{7,5}=-\frac{1}{36\epsilon^2}+\frac{13}{432\epsilon},$ $a_{7,6} = \frac{5}{72 \epsilon^2} - \frac{191}{864 \epsilon},$ $a_{7,7}=\frac{1}{36\epsilon^2}-\frac{13}{432\epsilon},$ $Y^{\mu\alpha}_{cd}$ $a_{7,9}=-\frac{1}{36\epsilon^2}-\frac{17}{432\epsilon},$ $a_{7,10} = \frac{5}{72 \epsilon^2} - \frac{149}{864 \epsilon},$ $a_{7,11} = \frac{1}{36\epsilon^2} - \frac{19}{432\epsilon},$ $A^\mu_{a|bc}A^\mu_{a|de}X_{bd}X_{ce}$ $a_{8,1}=-\frac{5}{16\epsilon^2}+\frac{19}{96\epsilon},$ $a_{8,2}=\frac{1}{8\epsilon^2}-\frac{11}{48\epsilon},$ $a_{8,3}=-\tfrac{1}{4\epsilon^2}+\tfrac{5}{8\epsilon},$ $a_{9,3} = -\frac{19}{36\epsilon^2} + \frac{5}{216\epsilon}$, $a_{9,4} = \frac{11}{36\epsilon^2} + \frac{17}{216\epsilon}$ $a_{9,1} = \frac{13}{72 \epsilon^2} - \frac{11}{432 \epsilon},$ $a_{9,2}=\frac{1}{36\epsilon^2}-\frac{5}{216\epsilon},$ $a_{9,5} = \frac{11}{36\epsilon^2} - \frac{145}{216\epsilon},$ $a_{10,1} = \frac{35}{1152 \epsilon} - \frac{5}{96 \epsilon^2},$ $a_{10,2} = \frac{1}{48\epsilon^2} - \frac{25}{576\epsilon},$ $a_{10,3} = \frac{13}{144\epsilon^2} + \frac{251}{1728\epsilon}$ $a_{10,5} = \frac{13}{144\epsilon^2} - \frac{217}{1728\epsilon}, \, \, \big| \, a_{10,6} = \frac{1}{72\epsilon^2} - \frac{25}{864\epsilon}, \, \, \, \big|$ $a_{10,7} = \frac{1}{72\epsilon^2} - \frac{67}{864\epsilon}, \quad a_{10,8} = \frac{1}{36\epsilon^2} - \frac{25}{1728\epsilon},$ $+ Y^{\nu\alpha}_{ae}Y^{\mu\alpha}_{cd} \rangle \qquad \qquad a_{10,9} = -\frac{29}{144\epsilon},$ $\left| \begin{array}{l} a_{10,10} = \frac{19}{288 \epsilon}, \end{array} \right.$

Back-up

B-type counterterms

$$
\mathcal{L}_{c.t.}^{(B,2)} = \frac{1}{(16\pi^2)^2 \epsilon^2} \Bigg[3B_{abcd} X_{ab} X_{cd} + \frac{3}{2} B_{a|bcd}^{\alpha} (D_{\alpha} X)_{ab} X_{cd} + \frac{1}{2} B_{a|bcd}^{\alpha} (D_{\mu} Y_{\mu\alpha})_{ab} X_{cd} \n+ \frac{1}{12} B_{ab|cd}^{\alpha\alpha} (D^2 X)_{ab} X_{cd} + \frac{1}{12} B_{ab|cd}^{\mu\nu} (\{D_{\mu}, D_{\nu}\} X)_{ab} X_{cd} + \frac{1}{12} B_{ab|cd}^{\mu\nu} (D^2 Y^{\mu\nu})_{ab} X_{cd} \n- \frac{1}{4} B_{ab|cd}^{\alpha\alpha} X_{ae} X_{eb} X_{cd} + \frac{1}{4} B_{ab|cd}^{\mu\nu} (X_{ae} Y_{eb}^{\mu\nu} + Y_{ae}^{\mu\nu} X_{eb}) X_{cd} \n- \frac{1}{12} B_{ab|cd}^{\mu\nu} Y_{ae}^{\mu\alpha} Y_{eb}^{\nu\alpha} X_{cd} + \frac{1}{4} B_{ab|cd}^{\mu\nu} Y_{ae}^{\nu\alpha} Y_{eb}^{\mu\alpha} X_{cd} - \frac{1}{24} B_{ab|cd}^{\alpha\alpha} Y_{ae}^{\mu\nu} Y_{eb}^{\mu\nu} X_{cd} \n+ \frac{1}{2} B_{ab|cd}^{\mu\nu} (D_{\mu} X)_{ac} (D_{\nu} X)_{bd} + \frac{1}{18} B_{ab|cd}^{\mu\nu} (D_{\alpha} Y^{\alpha\mu})_{ac} (D_{\beta} Y^{\beta\nu})_{bd} + \frac{1}{6} B_{ab|cd}^{\mu\nu} (D_{\mu} X)_{ac} (D_{\beta} Y^{\beta\nu})_{bd} \Bigg]
$$

Julie Pagès - UCSD - Geometry of EFTs

Julie Pagès — UCSD — Geometry of EFTs Back-up

sym(bcd) 1 6 $R_{eabf}R_{ecdg}(D_{\mu}\phi)^f(D^{\mu}\phi)^g$

$$
X_{ab} = -R_{acbd}(D_{\mu}\phi)^{c}(D^{\mu}\phi)^{d} - \nabla_{a}\nabla_{b}V
$$

$$
[Y_{\mu\nu}]_{ab} = R_{abcd}(D_{\mu}\phi^{c})(D_{\nu}\phi^{d}) + \nabla_{b}t_{a,\alpha}F_{\mu\nu}^{\alpha}
$$

$$
A_{abc} = -\frac{1}{6} \nabla_{(a} \nabla_b \nabla_{c)} V - \frac{1}{18} (\nabla_a R_{bdec} + \nabla_b R_{cdae} + \nabla_c R_{adbe}) (D_\mu \phi)^d (D^\mu \phi)^e
$$

\n
$$
A_{a|bc}^\mu = \frac{1}{3} (R_{abcd} + R_{acbd}) (D^\mu \phi)^d
$$

\n
$$
A_{ab|c}^{\mu\nu} = 0
$$

$$
B_{abcd} = -\frac{1}{24} \nabla_a \nabla_b \nabla_c \nabla_d V - \frac{1}{24} \nabla_a \nabla_d R_{becf} (D_\mu \phi)^e (D^\mu \phi)^f +
$$

\n
$$
B_{a|bcd}^\mu = \frac{1}{4} (\nabla_d R_{abce}) (D^\mu \phi)^e \qquad \text{sym(bcd)}
$$

\n
$$
B_{ab|cd}^{\mu\nu} = -\frac{1}{12} \eta^{\mu\nu} (R_{acbd} + R_{adbc})
$$

$$
\Delta S = \frac{1}{32\pi^2 \epsilon} \int d^4 x \left\{ \frac{1}{3} \text{Tr} \left[\mathcal{Y}_{\mu\nu} \mathcal{Y}^{\mu\nu} \right] + \text{Tr} \left[(\mathcal{D}_{\mu} \mathcal{M}) (\mathcal{D}^{\mu} \mathcal{M}) - (\mathcal{M} \mathcal{M})^2 \right] \right.- \frac{16}{3} \text{Tr} \left[(\mathcal{D}_{\mu} \mathcal{T}^{\mu\alpha}) (\mathcal{D}_{\nu} \mathcal{T}^{\nu\alpha}) - (\mathcal{T}^{\mu\nu} \mathcal{T}^{\alpha\beta})^2 \right] - 4i \text{Tr} \left[\mathcal{Y}_{\mu\nu} (\mathcal{M} \mathcal{T}^{\mu\nu} + \mathcal{T}^{\mu\nu} \mathcal{M}) \right] - 8 \text{Tr} (\mathcal{M} \mathcal{T}^{\mu\nu})^2 \right\},
$$

$$
[\mathcal{Y}_{\mu\nu}]^{p}_{\ r} = [\mathcal{D}_{\mu}, \mathcal{D}_{\nu}]^{p}_{\ r} = \bar{R}^{p}_{\ rIJ} (D_{\mu}\phi)^{I} (D_{\nu}\phi)^{J} + (\bar{\nabla}_{r} t^{p}_{A}) F^{A}_{\mu\nu},
$$

\n
$$
(\mathcal{D}_{\mu}\mathcal{M})^{p}_{\ r} = k^{p\bar{t}} (\mathcal{D}_{\mu}\mathcal{M}_{\bar{t}r}) = k^{p\bar{t}} [D_{\mu}\mathcal{M}_{\bar{t}r} - \bar{\Gamma}^{\bar{s}}_{\bar{t}\bar{t}} (D_{\mu}\phi)^{I} \mathcal{M}_{\bar{s}r} - \bar{\Gamma}^{\bar{s}}_{\bar{t}r} (D_{\mu}\phi)^{I} \mathcal{M}_{\bar{t}s}] ,
$$

\n
$$
(\mathcal{M}\mathcal{M})^{p}_{\ r} = k^{p\bar{t}} \mathcal{M}_{\bar{t}q} k^{q\bar{s}} \mathcal{M}_{\bar{s}r} ,
$$

\n
$$
(\mathcal{D}_{\mu}\mathcal{T}^{\alpha\beta})^{p}_{\ r} = k^{p\bar{t}} (\mathcal{D}_{\mu}\mathcal{T}^{\alpha\beta}_{\bar{t}r}) = k^{p\bar{t}} [D_{\mu}\mathcal{T}^{\alpha\beta}_{\bar{t}r} - \bar{\Gamma}^{\bar{s}}_{\bar{t}\bar{t}} (D_{\mu}\phi)^{I}\mathcal{T}^{\alpha\beta}_{\bar{s}r} - \bar{\Gamma}^{\bar{s}}_{\bar{t}r} (D_{\mu}\phi)^{I}\mathcal{T}^{\alpha\beta}_{\bar{t}s}] ,
$$

\n
$$
\mathcal{T}^{\mu\nu}\mathcal{T}^{\alpha\beta})^{p}_{\ r} = k^{p\bar{t}} \mathcal{T}^{\mu\nu}_{\bar{t}q} k^{q\bar{s}} \mathcal{T}^{\alpha\beta}_{\bar{s}r} .
$$

Julie Pagès - UCSD - Geometry of EFTs

Jet Bundle Geometry of Scalar Field Theories

Julie Pagès - UCSD - Geometry of EFTs

More derivatives

[Alminawi, Brivio, Davighi, 2308.00017]

