Geometry of EFTs

Julie Pagès UC San Diego

6th General Meeting of the LHC EFT Working Group

UC San Diego

November 17, 2023

We know physics is invariant under field redefinitions.

S-matrix elements are invariant (from LSZ formula) while correlation functions are not.

intermediate steps \Rightarrow different operator basis give same observables but not always easy to see.

i.e. scattering amplitudes, are covariant \rightarrow make observable invariance manifest.

Basis choice should not matter. For example, representations of the Goldstone are equivalent:

$$\overrightarrow{\phi} = \begin{pmatrix} \varphi_1 \\ \varphi_2 \\ \varphi_3 \\ \psi + h \end{pmatrix}$$

VS

- There is an ambiguity in our EFT Lagrangian description which makes this invariance at higher level unclear in
- The goal of (constant) *field-space geometry* is to write the Lagrangian in such a way that intermediate quantities,

Geometric interpretation

A scalar field theory can be written as:

$$\mathcal{L} = \frac{1}{2} g_{IJ}(\phi) (\partial_{\mu} \phi^{I}) (\partial^{\mu} \phi^{J})$$

where

- field values coordinates on a Riemannian manifold =
- inner-product on the tangent space • $g_{IJ}(\phi)$ of the field manifold: metric

- potential $V(\phi)$ function on the field manifold =
- field redefinitions = coordinate transformations (without derivatives)

[Alonso, Jenkins, Manohar, 1605.03602]

 $V - V(\phi) + higher-derivative terms$

 $ds^2 \equiv g_{II}(\phi) \, d\phi^I \, d\phi^J$

 $\phi^I \to \varphi^I(\phi)$

SM scalar manifold is flat

Geometric interpretation

Under a coordinate transformation, $\phi^I \rightarrow \phi^I(\phi)$

• the derivative of the scalar transforms as a vector (a, b)

$$\partial_{\mu}\phi^{I} \rightarrow \left(\frac{\delta\varphi^{I}}{\delta\phi^{J}}\right)\partial_{\mu}\phi^{J}$$

• the metric transforms as a tensor

$$g_{IJ} \rightarrow \left(\frac{\delta\phi^K}{\delta\varphi^I}\right) \left(\frac{\delta\phi^L}{\delta\varphi^J}\right) g_{KL}$$

so
$$\mathscr{L}_{kin} = \frac{1}{2} g_{IJ}(\phi) (\partial_{\mu} \phi^{I}) (\partial^{\mu} \phi^{J})$$
 is invariant.

field redefinition in-/covariance

Advantages of the geometric description for EFTs :

• Resums higher dimensional operators

$$\mathscr{L}_{O(N) \text{ EFT}} \supset \frac{1}{2} \underbrace{\left(\delta_{IJ} + C_E(\phi \cdot g_I)\right)}_{g_I}$$

 \Rightarrow amplitudes and RGE in terms of geometric objects contain the full tower \rightarrow precision

- Same geometric description can represent different EFTs (for example HEFT or SMEFT) \Rightarrow unify picture and define more relevant quantities than Wilson coefficients \rightarrow structure derive EFT cutoff [Cohen, Craig, Lu, Sutherland, 2108.03240]
- Covariant amplitudes and RGE \Rightarrow more compact expressions \rightarrow efficiency

- $\phi)\delta_{IJ} + C_2 \phi_I \phi_J \left(\partial_\mu \phi^I \right) (\partial^\mu \phi^J) V(\phi)$
- $T_{II}(\phi)$
- see Anke's talk

see Andreas

SMEFT vs HEFT from non-analyticity

SMEFT

Higgs and Goldstones are embedded into a doublet $H \rightarrow LH$

• same symmetry

• different field content

Usually: linear realization $H = \frac{1}{\sqrt{2}} \begin{pmatrix} iG_1 + G_2 \\ v + h + iG_3 \end{pmatrix}$

Going from SMEFT-form to HEFT-form is always possible. Going from HEFT-form to SMEFT-form is not.

 \Rightarrow SMEFT vs HEFT = analytic vs non-analytic Lagrangian in H [Falkowski, Rattazzi, 1902.05936]

Some non-analyticities can be removed by field redefinitions.

Julie Pagès — UCSD — Geometry of EFTs

see Javier's talk

 $SU(2)_L \times U(1)_Y \rightarrow U(1)_O$ $L \in SU(2)_L R \in U(1)_Y$

Higgs is a singlet $h \rightarrow h$ and Goldstones $U \rightarrow LUR^{\dagger}$

Usually: nonlinear realization

$$h, U = \exp\left(\frac{i\pi^a \tau^a}{v}\right)$$

see All Things EFT talk by Xiaochuan Lu

SMEFT vs HEFT from geometry

A HEFT can be written in SMEFT-form ⇔

- there exist an O(4) invariant fixed point h^* on the scalar manifold [Alonso, Jenkins, Manohar, 1605.03602]
- metric and potential are analytic at h^*

[Cohen, Craig, Lu, Sutherland, 2008.08597]

Amplitudes from geometry

 $\mathscr{A}(\phi\phi \to \phi\phi) \sim (s \partial\Gamma + t \partial\Gamma + u \partial\Gamma) +$

Four-point amplitude depends on curvature. Five-point amplitude depends on covariant derivative of the curvature. • • •

[Alonso, Jenkins, Manohar, 1511.00724]

Julie Pagès — UCSD — Geometry of EFTs

 $\Rightarrow \mathscr{A}(\phi_I \phi_I \to \phi_K \phi_L) = R_{IKIL} s + R_{IIKL} t$

Higgs cross-sections, W_L scattering, S parameter measurements can tell us if scalar manifold is flat or curved.

RGE at one-loop

To obtain an algebraic formula for MS counterterms we use the background field method $\phi \rightarrow \phi + \eta$

at
$$\mathcal{O}(\eta^2)$$
:
$$\delta^2 \mathscr{L} = \frac{1}{2} (\partial_\mu \eta)^T (\partial^\mu \eta) + (\partial_\mu \eta)^T N^\mu \eta + \frac{1}{2} \eta^T X \eta$$

where N^{μ} is antisymmetric without loss of generality and X is symmetric.

With the covariant derivative $D_{\mu}\eta \equiv \partial_{\mu}\eta + N_{\mu}\eta$ and redefining X we have

Using naive dimensional analysis, the 't Hooft formula for one-loop counterterms is ['t Hooft, Nucl. Phys. B 62 (1973)]

$$\mathscr{L}_{c.t.}^{(1)} = \frac{1}{16\pi^2\epsilon}$$

Julie Pagès — UCSD — Geometry of EFTs

 $\delta^2 \mathscr{L} = \frac{1}{2} (D_{\mu} \eta)^T (D^{\mu} \eta) + \frac{1}{2} \eta^T X \eta$

with
$$Y_{\mu\nu} = [D_{\mu}, D_{\mu}]$$

RGE at two-loop

For two-loop we need the expansion of the Lagrangian in quantum fluctuations to

 $\mathcal{O}(\eta^{3}): \qquad \qquad \delta^{3}\mathscr{L} = \mathbf{A}_{abc}\eta^{a}\eta^{b}\eta^{c} + \\ \mathcal{O}(\eta^{4}): \qquad \qquad \delta^{4}\mathscr{L} = \mathbf{B}_{abcd}\eta^{a}\eta^{b}\eta^{c}\eta$

where A and B are symmetric and the completely symmetric parts of A^{μ} and B^{μ} vanish.

The graphs to compute for the two-loop algebraic formula are

Full results in [Jenkins, Manohar, Naterop, JP, 2308.06315]

Julie Pagès — UCSD — Geometry of EFTs

 $\delta^{3}\mathscr{L} = \mathbf{A}_{abc}\eta^{a}\eta^{b}\eta^{c} + \mathbf{A}_{a|bc}^{\mu}(D_{\mu}\eta)^{a}\eta^{b}\eta^{c} + \mathbf{A}_{ab|c}^{\mu\nu}(D_{\mu}\eta)^{a}(D_{\nu}\eta)^{b}\eta^{c}$ $\delta^{4}\mathscr{L} = \mathbf{B}_{abcd}\eta^{a}\eta^{b}\eta^{c}\eta^{d} + \mathbf{B}_{a|bcd}^{\mu}(D_{\mu}\eta)^{a}\eta^{b}\eta^{c}\eta^{d} + \mathbf{B}_{ab|cd}^{\mu\nu}(D_{\mu}\eta)^{a}(D_{\nu}\eta)^{b}\eta^{c}\eta^{d}$

with 0, 1 or 2 insertions of X / $Y_{\mu\nu}$

with 2 or 3 insertions of X / $Y_{\mu\nu}$

Riemannian normal coordinates

Using cartesian coordinates, we find that counterterms are not covariant. The reason is that ϕ is a coordinate and does not transform as a tensor, but tangent vectors do.

<u>Solution</u>: use Riemannian normal coordinates (local coordinates obtained by applying the exponential map to the tangent space at \mathscr{P}_0) for the quantum fluctuation.

 $g_{IJ}(\mathcal{P}_0) = \delta_{IJ} \qquad \qquad \Gamma^I_{JK}(\mathcal{P}_0) = 0$

 \Rightarrow expand Lagrangian in

$$\phi^I \rightarrow \phi^I + \eta^I - \frac{1}{2} \Gamma^I_{JK} \eta^J \eta^K - \frac{1}{3!} \mathbf{I}$$

Julie Pagès — UCSD — Geometry of EFTs

11/16

Non-coordinate basis

Algebraic counterterm formulae were derived for renormalizable theories \Leftrightarrow for a flat field-space manifold. So we cannot apply them to our coordinates on the curved field-space manifold.

Solution: go to local inertial frames using vielbeins and apply formulae there.

$$g_{IJ}(\phi) = e^a{}_I(\phi)e^b{}_J(\phi)\delta_{ab} \qquad (\mathcal{D}_\mu\eta)^I$$

 \Rightarrow Since every indices are contracted, formulae are unchanged.

Julie Pagès — UCSD — Geometry of EFTs

 $= e^{I}{}_{a}(\mathcal{D}_{\mu}\eta)^{a}$

 $R_{IJKL} = e^{a} e^{b} e^{c} e^{c} R^{a} R_{abcd}$

Using this technique we computed the RGE for:

- w up to one-loop order
 - SMEFT bosonic sector to dim 8 [Helset, Jenkins, Manohar, 2212.03253]
 - SMEFT bosonic operators from a fermion loop to dim 8 [Assi, Helset, Manohar, JP, Shen, 2307.03187]

 \rightarrow agree with [Chala, Guedes, Ramos, Santiago, 2106.05291] [Das Bakshi, Chala, Díaz-Carmona, Guedes, 2205.03301]

- In to two-loop order [Jenkins, Manohar, Naterop, JP, 2310.19883]
 - O(N) scalar EFT to dim 6
 - SMEFT scalar sector to dim 6 \rightarrow new!
 - χ PT to $\mathcal{O}(p^6)$

 \hookrightarrow directly usable for dim 8

 \rightarrow agree with [Cao, Herzog, Melia, Nepveu, 2105.12742]

 \rightarrow agree with [Bijnens, Colangelo, Ecker, hep-ph/9907333]

What remains

More RGEs

- full one-loop RGE for SMEFT at dim 8
 - mixed scalar-fermion loops
 - four-fermion operators
 - contributions to fermionic operators
 - mixed vector-fermion loops
- two-loop counterterm formula including fermions and gauge bosons
- More derivatives
 - operators with more than one derivative on each field
 - Lagrange spaces? [Craig, Lee, Lu, Sutherland, 2305.09722]
 - jet bundle geometry? [Alminawi, Brivio, Davighi, 2308.00017] [Craig, Lee, 2307.15742]
 - derivative field redefinition
 - on-shell covariance of amplitudes? [Cohen, Craig, Lu, Sutherland, 2202.06965]
 - geometry-kinematics duality? [Cheung, Helset, and Parra-Martinez, 2202.06972]
- More applications

Julie Pagès — UCSD — Geometry of EFTs

[Assi, Helset, JP, Shen, w.i.p]

Summary:

- Field-space geometry offer an alternative, more basis-independent, description of EFTs
- Scattering amplitudes and RGE are covariant and easier to compute
- RGE calculations are easily generalizable to any EFT order

Future plans:

- Some formal developments needed to generalize to arbitrary EFTs
- Develop phenomenology studies with geometry

Thank you!

Gauge fields

$$\mathcal{L} = \frac{1}{2} h_{IJ}(\phi) (D_{\mu}\phi)^{I} (D^{\mu}\phi)^{J} - \frac{1}{4} g_{AB}(\phi) F^{A}_{\mu\nu} F^{B\mu\nu} - V(\phi)$$

$$(D_{\mu}\phi)^{I} = \partial_{\mu}\phi^{I} + A^{B}_{\mu}t^{I}_{B}(\phi)$$
Killing vectors

Vector-scalar field-space manifold

$$g_{ij} = \begin{pmatrix} h_{IJ} & 0\\ 0 & \eta_{\mu_A \mu_B} g_{AB} \end{pmatrix}$$

[Helset, Jenkins, Manohar, 2210.08000]

Julie Pagès — UCSD — Geometry of EFTs

Beyond scalars

+

Fermions

$$\frac{i}{2}k_{\bar{p}r}(\phi)\left(\overline{\psi}^{\bar{p}}\gamma^{\mu}\overleftrightarrow{D}_{\mu}\psi^{r}\right) + i\omega_{\bar{p}rI}(\phi)(D_{\mu}\phi)^{I}(\overline{\psi}^{\bar{p}}\gamma^{\mu}\psi^{r}) - \overline{\psi}^{\bar{p}}\mathscr{M}_{\bar{p}r}\psi^{r} + \overline{\psi}^{\bar{p}}\sigma_{\mu\nu}\mathscr{T}^{\mu\nu}_{\bar{p}r}(\phi,F)\psi^{r}$$

Fermion-scalar field-space supermanifold (with Grassmann coordinates)

$$g_{ab} = \begin{pmatrix} h_{IJ} & (\omega^{-}\overline{\psi})_{rI} & (\omega^{+}\psi)_{\bar{r}I} \\ -(\omega^{-}\overline{\psi})_{pJ} & 0 & k_{\bar{r}p} \\ -(\omega^{+}\psi)_{\bar{p}J} & -k_{\bar{p}r} & 0 \end{pmatrix} \omega_{\bar{p}rI}^{\pm} = \omega_{\bar{p}rI}$$

[Assi, Helset, Manohar, JP, Shen, 2307.03187] [Finn, Karamitsos, Pilaftsis, 2006.05831]

A-type counterterms

$$\begin{split} \mathcal{L}_{c.t.}^{(A,2)} &= \frac{1}{(16\pi^2)^2} \Bigg[a_{1,1} D_{\mu} A_{abc} D_{\mu} A_{abc} + a_{2,1} A_{abc} X_{cd} A_{abd} \\ &+ a_{3,1} D_{\mu} A_{a|bc}^{\mu} A_{abd} X_{cd} + a_{3,2} A_{a|bc}^{\mu} D_{\mu} A_{abd} X_{cd} + a_{4,1} D_{\nu} A_{a|bc}^{\mu} A_{abd} Y_{cd}^{\mu\nu} + a_{4,2} A_{a|bc}^{\mu} \\ &+ a_{5,1} D^2 A_{a|bc}^{\mu} D^2 A_{a|bc}^{\mu} + a_{5,2} D_{\alpha} D_{\mu} A_{a|bc}^{\mu} D_{\alpha} D_{\nu} A_{a|bc}^{\nu} \\ &+ a_{6,1} D^2 A_{a|bc}^{\mu} D^2 A_{a|bd}^{\mu} X_{cd} + a_{6,2} D^2 A_{c|ab}^{\mu} A_{a|ab}^{\mu} X_{cd} + a_{6,3} D_{\alpha} A_{a|bc}^{\mu} D_{\alpha} A_{a|bc}^{\mu} D_{\alpha} A_{a|bd}^{\mu} X_{cd} + a_{6,4} \\ &+ a_{6,5} D_{\mu} A_{a|bc}^{\mu} D_{\nu} A_{a|bd}^{\nu} X_{cd} + a_{6,6} D_{\mu} A_{c|ab}^{\mu} D_{\nu} A_{a|bb}^{\nu} X_{cd} + a_{6,7} D_{\nu} A_{a|bc}^{\mu} D_{\mu} A_{a|bc}^{\nu} D_{\mu} A_{a|bd}^{\nu} X_{cd} \\ &+ a_{6,8} D_{\nu} A_{a|bc}^{\mu} D_{\mu} A_{a|bd}^{\nu} X_{cd} + a_{6,9} D_{\nu} D_{\mu} A_{a|bb}^{\mu} A_{ad}^{\nu} X_{cd} + a_{6,10} D_{\nu} D_{\mu} A_{a|bc}^{\mu} D_{\mu} A_{a|bb}^{\nu} X_{cd} \\ &+ a_{7,1} D_{\alpha} A_{a|bc}^{\mu} D_{\alpha} A_{a|bd}^{\nu} Y_{cd}^{\mu\nu} + a_{7,2} D_{\alpha} A_{c|ab}^{\mu} D_{\nu} A_{a|bc}^{\nu} A_{a|bd}^{\nu} Y_{cd}^{\mu\nu} + a_{7,3} D_{\mu} A_{a|bc}^{\alpha} D_{\nu} A_{a|bd}^{\nu} Y_{cd}^{\mu\nu} \\ &+ a_{7,7} D_{\nu} A_{a|bc}^{\alpha} D_{\mu} A_{a|bd}^{\mu} Y_{cd}^{\mu\nu} + a_{7,8} D_{\nu} A_{a|bc}^{\alpha} D_{\nu} A_{a|bd}^{\nu} Y_{cd}^{\mu\nu} + a_{7,9} A_{a|bc}^{\alpha} D_{\mu} D_{\nu} A_{a|bd}^{\alpha} Y_{cd}^{\mu\mu} \\ &+ a_{7,10} A_{a|bc}^{\alpha} D_{\mu} A_{a|bd}^{\nu} Y_{cd}^{\mu\nu} + a_{7,11} D_{\mu} D_{\nu} A_{a|bc}^{\alpha} A_{a|bd}^{\mu} Y_{cd}^{\mu\nu} + a_{7,12} D_{\mu} D_{\nu} A_{a|bd}^{\alpha} Y_{cd}^{\mu\mu} \\ &+ a_{7,10} A_{a|bc}^{\alpha} D_{\mu} A_{a|bd}^{\mu} Y_{cd}^{\mu\nu} + a_{7,11} D_{\mu} D_{\nu} A_{a|bc}^{\alpha} A_{a|bd}^{\mu} X_{cd}^{\mu} + a_{7,12} D_{\mu} D_{\nu} A_{a|bd}^{\alpha} A_{d|ab}^{\mu} \\ &+ a_{8,1} A_{a|bc}^{\mu} A_{a|bb}^{\mu} X_{ce} X_{ed} + a_{8,2} A_{a|bc}^{\mu} A_{a|bc}^{\mu} A_{a|bc}^{\mu} A_{a|bd}^{\mu} X_{cd}^{\mu} + a_{9,3} A_{a|bc}^{\mu} A_{b|ab}^{\mu} X_{cd}^{\mu} + a_{9,3} A_{a|bc}^{\mu} A_{b}^{\mu} A_{b}^{\mu} X_{ce}^{\mu} + a_{0,3} A_{a|bc}^{\mu} A_{a|b}^{\mu} X_{ce}^{\mu} + a_{0,3} A_{a|bc}^{\mu} A_{a|bd}^{\mu} X_{ce}^{\mu} + a_{0,3} A_{a|bc}^{\mu} A_{a|bd}^{\mu} X_{ce}^{\mu} X_{cd}^{\mu} + a_{0,3} A_{a|bc}^{\mu} A_$$

Julie Pagès — UCSD — Geometry of EFTs

 $_{c}D_{\nu}A_{abd}Y^{\mu
u}_{cd}$ $a_{2,1} = rac{9}{2\epsilon^2} - rac{9}{2\epsilon},$ $a_{1,1} = -\frac{3}{4\epsilon},$ $_{4}D_{\alpha}A^{\mu}_{c|ab}D_{\alpha}A^{\mu}_{d|ab}X_{cd} \ a_{3,1} = \frac{3}{2\epsilon^{2}} - \frac{15}{4\epsilon},$ $a_{4,1} = -\frac{3}{2\epsilon^2} + \frac{7}{4\epsilon},$ $a_{3,2} = \frac{9}{2\epsilon^2} - \frac{9}{4\epsilon},$ $a_{4,2} = -\frac{3}{2\epsilon^2} - \frac{5}{4\epsilon},$ $a_{5,2} = -\frac{1}{48\epsilon},$ $a_{5,1} = \frac{1}{64\epsilon},$ $a_{6,1} = \frac{1}{36\epsilon^2} + \frac{25}{216\epsilon},$ $a_{6,3} = -\frac{5}{36\epsilon^2} + \frac{37}{216\epsilon},$ $a_{6,2} = \frac{13}{72\epsilon^2} - \frac{107}{432\epsilon},$ $a_{6,4} = \frac{2}{9\epsilon^2} - \frac{2}{27\epsilon},$ $a_{6,8} = \frac{13}{72\epsilon^2} - \frac{11}{432\epsilon},$ $a_{6,5} = \frac{1}{36\epsilon^2} - \frac{5}{216\epsilon},$ $a_{6,6} = -\frac{5}{72\epsilon^2} - \frac{65}{432\epsilon},$ $a_{6,7} = rac{1}{36\epsilon^2} - rac{5}{216\epsilon},$ ν $a_{6,9} = -\frac{1}{9\epsilon^2} + \frac{5}{54\epsilon},$ $a_{6,10} = \frac{1}{36\epsilon^2} - \frac{59}{216\epsilon},$ lpha $a_{7,1} = -\frac{1}{48\epsilon},$ $a_{7,2} = -\frac{13}{96\epsilon},$ $a_{7,3} = \frac{1}{18\epsilon^2} + \frac{1}{432\epsilon},$ lpha $a_{7,5} = -\frac{1}{36\epsilon^2} + \frac{13}{432\epsilon},$ $a_{7,6} = rac{5}{72\epsilon^2} - rac{191}{864\epsilon},$ $a_{7,7} = \frac{1}{36\epsilon^2} - \frac{13}{432\epsilon},$ Y^{\mulpha}_{cd} $a_{7,9} = -\frac{1}{36\epsilon^2} - \frac{17}{432\epsilon},$ $a_{7,10} = rac{5}{72\epsilon^2} - rac{149}{864\epsilon},$ $a_{7,11} = rac{1}{36\epsilon^2} - rac{19}{432\epsilon},$ $A^{\mu}_{a|bc}A^{\mu}_{a|de}X_{bd}X_{ce}$ $a_{8,1} = -\frac{5}{16\epsilon^2} + \frac{19}{96\epsilon},$ $a_{8,2}=rac{1}{8\epsilon^2}-rac{11}{48\epsilon},$ $a_{8,3} = -\frac{1}{4\epsilon^2} + \frac{5}{8\epsilon},$ $a_{9,1} = \frac{13}{72\epsilon^2} - \frac{11}{432\epsilon},$ $a_{9,2}=rac{1}{36\epsilon^2}-rac{5}{216\epsilon},$ $a_{9,3} = -rac{19}{36\epsilon^2} + rac{5}{216\epsilon},$ $a_{9,5} = \frac{11}{36\epsilon^2} - \frac{145}{216\epsilon},$ $a_{10,1} = \frac{35}{1152\epsilon} - \frac{5}{96\epsilon^2},$ $a_{10,2} = rac{1}{48\epsilon^2} - rac{25}{576\epsilon},$ $a_{10,3} = rac{13}{144\epsilon^2} + rac{251}{1728\epsilon}$ $a_{10,5} = \frac{13}{144\epsilon^2} - \frac{217}{1728\epsilon},$ $a_{10,7} = rac{1}{72\epsilon^2} - rac{67}{864\epsilon},$ $a_{10,6} = \frac{1}{72\epsilon^2} - \frac{25}{864\epsilon},$ $a_{10,8} = \frac{1}{36\epsilon^2} - \frac{25}{1728\epsilon},$ $+ Y^{
u lpha}_{ae} Y^{\mu lpha}_{cd}) \qquad \qquad a_{10,9} = -rac{29}{144\epsilon},$ $| a_{10,10} = rac{19}{288\epsilon}, \qquad | a_{10,11} = -rac{1}{8\epsilon}$

Back-up

B-type counterterms

$$\begin{aligned} \mathcal{L}_{\text{c.t.}}^{(B,2)} &= \frac{1}{(16\pi^2)^2 \epsilon^2} \Biggl[3B_{abcd} X_{ab} X_{cd} + \frac{3}{2} B^{\alpha}_{a|bcd} (D_{\alpha} X)_{ab} X_{cd} + \frac{1}{2} B^{\alpha}_{a|bcd} (D_{\mu} Y_{\mu\alpha})_{ab} X_{cd} \\ &+ \frac{1}{12} B^{\alpha\alpha}_{ab|cd} (D^2 X)_{ab} X_{cd} + \frac{1}{12} B^{\mu\nu}_{ab|cd} (\{D_{\mu}, D_{\nu}\} X)_{ab} X_{cd} + \frac{1}{12} B^{\mu\nu}_{ab|cd} (D^2 Y^{\mu\nu})_{ab} X_{cd} \\ &- \frac{1}{4} B^{\alpha\alpha}_{ab|cd} X_{ae} X_{eb} X_{cd} + \frac{1}{4} B^{\mu\nu}_{ab|cd} (X_{ae} Y^{\mu\nu}_{eb} + Y^{\mu\nu}_{ae} X_{eb}) X_{cd} \\ &- \frac{1}{12} B^{\mu\nu}_{ab|cd} Y^{\mu\alpha}_{ae} Y^{\nu\alpha}_{eb} X_{cd} + \frac{1}{4} B^{\mu\nu}_{ab|cd} Y^{\nu\alpha}_{ae} Y^{\mu\alpha}_{eb} X_{cd} - \frac{1}{24} B^{\alpha\alpha}_{ab|cd} Y^{\mu\nu}_{ae} Y^{\mu\nu}_{eb} X_{cd} \\ &+ \frac{1}{2} B^{\mu\nu}_{ab|cd} (D_{\mu} X)_{ac} (D_{\nu} X)_{bd} + \frac{1}{18} B^{\mu\nu}_{ab|cd} (D_{\alpha} Y^{\alpha\mu})_{ac} (D_{\beta} Y^{\beta\nu})_{bd} + \frac{1}{6} B^{\mu\nu}_{ab|cd} (D_{\mu} X)_{ac} (D_{\beta} Y^{\beta\nu})_{bd} \Biggr] \end{aligned}$$

Background coefficients in normal coordinates

$$X_{ab} = -R_{acbd} (D_{\mu}\phi)^{c} (D^{\mu}\phi)^{d} - \nabla_{a}\nabla_{b}V$$
$$[Y_{\mu\nu}]_{ab} = R_{abcd} (D_{\mu}\phi^{c}) (D_{\nu}\phi^{d}) + \nabla_{b}t_{a,\alpha}F^{\alpha}_{\mu\nu}$$

$$\begin{split} A_{abc} &= -\frac{1}{6} \nabla_{(a} \nabla_{b} \nabla_{c)} V - \frac{1}{18} (\nabla_{a} R_{bdce} + \nabla_{b} R_{cd} \\ A^{\mu}_{a|bc} &= \frac{1}{3} (R_{abcd} + R_{acbd}) (D^{\mu} \phi)^{d} \\ A^{\mu\nu}_{ab|c} &= 0 \end{split}$$

$$\begin{split} B_{abcd} &= -\frac{1}{24} \nabla_a \nabla_b \nabla_c \nabla_d V - \frac{1}{24} \nabla_a \nabla_d R_{becf} (D_{abcd}) \\ B_{a|bcd}^{\mu} &= \frac{1}{4} (\nabla_d R_{abce}) (D^{\mu} \phi)^e \quad \text{sym(bcd)} \\ B_{ab|cd}^{\mu\nu} &= -\frac{1}{12} \eta^{\mu\nu} (R_{acbd} + R_{adbc}) \end{split}$$

 $_{dae} + \nabla_c R_{adbe}) (D_{\mu}\phi)^d (D^{\mu}\phi)^e$

 $D_{\mu}\phi)^{e}(D^{\mu}\phi)^{f} + \frac{1}{6}R_{eabf}R_{ecdg}(D_{\mu}\phi)^{f}(D^{\mu}\phi)^{g}$ sym(bcd)

$$\begin{split} \Delta S = & \frac{1}{32\pi^2\epsilon} \int \mathrm{d}^4 x \, \left\{ \frac{1}{3} \mathrm{Tr} \left[\mathcal{Y}_{\mu\nu} \mathcal{Y}^{\mu\nu} \right] + \mathrm{Tr} \left[(\mathcal{D}_{\mu} \mathcal{M}) (\mathcal{D}^{\mu} \mathcal{M}) - (\mathcal{M} \mathcal{M})^2 \right] \right. \\ & \left. - \frac{16}{3} \mathrm{Tr} \left[(\mathcal{D}_{\mu} \mathcal{T}^{\mu\alpha}) (\mathcal{D}_{\nu} \mathcal{T}^{\nu\alpha}) - (\mathcal{T}^{\mu\nu} \mathcal{T}^{\alpha\beta})^2 \right] \right. \\ & \left. - 4i \mathrm{Tr} \left[\mathcal{Y}_{\mu\nu} (\mathcal{M} \mathcal{T}^{\mu\nu} + \mathcal{T}^{\mu\nu} \mathcal{M}) \right] - 8 \mathrm{Tr} (\mathcal{M} \mathcal{T}^{\mu\nu})^2 \right\}, \end{split}$$

$$\begin{split} \left[\mathcal{Y}_{\mu\nu}\right]_{\ r}^{p} &= \left[\mathcal{D}_{\mu}, \mathcal{D}_{\nu}\right]_{\ r}^{p} = \bar{R}_{\ rIJ}^{p} (D_{\mu}\phi)^{I} (D_{\nu}\phi)^{J} + \left(\bar{\nabla}_{r}t_{A}^{p}\right)F_{\mu\nu}^{A}, \\ \left(\mathcal{D}_{\mu}\mathcal{M}\right)_{\ r}^{p} &= k^{p\bar{t}} (\mathcal{D}_{\mu}\mathcal{M}_{\bar{t}r}) = k^{p\bar{t}} \left[D_{\mu}\mathcal{M}_{\bar{t}r} - \bar{\Gamma}_{I\bar{t}}^{\bar{s}} (D_{\mu}\phi)^{I}\mathcal{M}_{\bar{s}r} - \bar{\Gamma}_{Ir}^{s} (D_{\mu}\phi)^{I}\mathcal{M}_{\bar{t}s}\right], \\ \left(\mathcal{M}\mathcal{M}\right)_{\ r}^{p} &= k^{p\bar{t}}\mathcal{M}_{\bar{t}q}k^{q\bar{s}}\mathcal{M}_{\bar{s}r}, \\ \left(\mathcal{D}_{\mu}\mathcal{T}^{\alpha\beta}\right)_{\ r}^{p} &= k^{p\bar{t}} (\mathcal{D}_{\mu}\mathcal{T}_{\bar{t}r}^{\alpha\beta}) = k^{p\bar{t}} \left[D_{\mu}\mathcal{T}_{\bar{t}r}^{\alpha\beta} - \bar{\Gamma}_{I\bar{t}}^{\bar{s}} (D_{\mu}\phi)^{I}\mathcal{T}_{\bar{s}r}^{\alpha\beta} - \bar{\Gamma}_{Ir}^{s} (D_{\mu}\phi)^{I}\mathcal{T}_{\bar{t}s}^{\alpha\beta}\right], \\ \left(\mathcal{T}^{\mu\nu}\mathcal{T}^{\alpha\beta}\right)_{\ r}^{p} &= k^{p\bar{t}}\mathcal{T}_{\bar{t}q}^{\mu\nu}k^{q\bar{s}}\mathcal{T}_{\bar{s}r}^{\alpha\beta}. \end{split}$$

Jet Bundle Geometry of Scalar Field Theories

Julie Pagès — UCSD — Geometry of EFTs

More derivatives

[Alminawi, Brivio, Davighi, 2308.00017]

