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Field redefinition invariance

We know physics is invariant under field redefinitions. 

S-matrix elements are invariant (from LSZ formula) while correlation functions are not. 

There is an ambiguity in our EFT Lagrangian description which makes this invariance at higher level unclear in 
intermediate steps  different operator basis give same observables but not always easy to see.  

The goal of (constant) field-space geometry is to write the Lagrangian in such a way that intermediate quantities, 
i.e. scattering amplitudes, are covariant  make observable invariance manifest. 

Basis choice should not matter. 
For example, representations of the Goldstone are equivalent: 

                           Linear                             vs                         Nonlinear 

                                                                     with       

⇒

→

⃗ϕ =

φ1
φ2
φ3

v + h

⃗ϕ = (v + h) ⃗n(π) ⃗n(π) =
1
v

π1
π2
π3

v2 − ⃗π ⋅ ⃗π
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A scalar field theory can be written as:                   [Alonso, Jenkins, Manohar, 1605.03602] 

 higher-derivative terms 

where 

• field values                =    coordinates on a Riemannian manifold  

•                          =    inner-product on the tangent space  
                 of the field manifold: metric 

   

• potential            =    function on the field manifold 

• field redefinitions      =    coordinate transformations 
(without derivatives) 

ℒ =
1
2

gIJ(ϕ) (∂μϕI)(∂μϕJ) − V(ϕ) +

gIJ(ϕ)

ds2 ≡ gIJ(ϕ) dϕI dϕJ

V(ϕ)

ϕI → φI(ϕ)

3

Geometric interpretation

ϕ1

ϕ2

SM scalar manifold is flat
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Under a coordinate transformation, 
 

• the derivative of the scalar transforms as a vector 

 

• the metric transforms as a tensor 

 

so  is invariant.

ϕI → φI(ϕ)

∂μϕI → ( δφI

δϕJ ) ∂μϕJ

gIJ → ( δϕK

δφI ) ( δϕL

δφJ ) gKL

ℒkin =
1
2

gIJ(ϕ) (∂μϕI)(∂μϕJ)

4

Geometric interpretation

From the metric we can define, 

• Christoffel symbols 

 

• Covariant derivatives 

 

• Riemann curvature tensor 
 

 and  will appear in scattering amplitudes  
making them covariant.

ΓI
JK =

1
2

gIL (gLJ,K + gLK,J − gJK,L)

TJ;I ≡ ∇ITJ =
∂TJ

∂ϕI
− ΓK

IJ TK

RI
JKL = ∂KΓI

JL + ΓI
KNΓN

JL − (K ↔ L)

R ∇

field redefinition in-/covariance    =    coordinate in-/covariance⇒
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Advantages of field-space geometry

Advantages of the geometric description for EFTs : 

• Resums higher dimensional operators  

    

 amplitudes and RGE in terms of geometric objects contain the full tower  precision       see Anke’s talk 

• Same geometric description can represent different EFTs (for example HEFT or SMEFT) 

 unify picture and define more relevant quantities than Wilson coefficients  structure   
     derive EFT cutoff [Cohen, Craig, Lu, Sutherland, 2108.03240] 

• Covariant amplitudes and RGE 

 more compact expressions  efficiency   

ℒO(N) EFT ⊃
1
2 (δIJ + CE (ϕ ⋅ ϕ)δIJ + C2 ϕIϕJ)

gIJ(ϕ)

(∂μϕI)(∂μϕJ) −V(ϕ)

⇒ →

⇒ →

⇒ →

see Andreas’ talk
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Going from SMEFT-form to HEFT-form is always possible. 
Going from HEFT-form to SMEFT-form is not. 

 SMEFT vs HEFT = analytic vs non-analytic Lagrangian in  
  [Falkowski, Rattazzi, 1902.05936] 

Some non-analyticities can be removed by field redefinitions.

⇒ H

6

SMEFT vs HEFT from non-analyticity

Higgs and Goldstones are  

embedded into a doublet 

 

Usually: linear realization 

 

H → LH

H =
1

2 ( iG1 + G2

v + h + iG3)

Higgs is a singlet 

 
and Goldstones 

 

Usually: nonlinear realization 

, 

h → h

U → LUR†

h U = exp ( iπaτa

v )

• same symmetry 
 

   

• different field content

SU(2)L × U(1)Y → U(1)Q
L ∈ SU(2)L R ∈ U(1)Y

SMEFT HEFT

SMSMEFTHEFT

see All Things EFT talk  

by Xiaochuan Lu 

see Javier’s talk
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SMEFT vs HEFT from geometry

SMEFT HEFT

figure from  
Aneesh Manohar

A HEFT can be written in SMEFT-form   

• there exist an  invariant fixed point  on the scalar manifold 
[Alonso, Jenkins, Manohar, 1605.03602] 

• metric and potential are analytic at  
[Cohen, Craig, Lu, Sutherland, 2008.08597]

⇔
O(4) h*

h*

h* h* h* see All Things EFT talk  

by Xiaochuan Lu 
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Amplitudes from geometry

+ + +

   (s + t + u )  +                  s               +       t         +        u   ∼ ∂Γ ∂Γ ∂Γ ΓΓ ΓΓ ΓΓ

 ⇒ 𝒜(ϕIϕJ → ϕKϕL) = RIKJL s + RIJKL t

𝒜(ϕϕ → ϕϕ)

Four-point amplitude depends on curvature. 
Five-point amplitude depends on covariant derivative of the curvature. 
… 

Higgs cross-sections,  scattering, S parameter measurements can tell us if scalar manifold is flat or curved.  

[Alonso, Jenkins, Manohar, 1511.00724]

WL

at tree-level

Covariant amplitudes: 
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RGE at one-loop

To obtain an algebraic formula for MS counterterms we use the background field method  

at :                                           

where  is antisymmetric without loss of generality and  is symmetric.  

With the covariant derivative  and redefining  we have 

 

Using naive dimensional analysis, the ’t Hooft formula for one-loop counterterms is   [’t Hooft, Nucl.Phys.B 62 (1973)] 

with  

ϕ → ϕ + η

𝒪(η2) δ2ℒ =
1
2

(∂μη)T(∂μη) + (∂μη)TNμη +
1
2

ηT Xη

Nμ X

Dμη ≡ ∂μη + Nμη X

δ2ℒ =
1
2

(Dμη)T(Dμη) +
1
2

ηT Xη

Yμν = [Dμ, Dν]ℒ(1)
c.t. =

1
16π2ϵ

Tr [−
1
4

X2 −
1

24
Y2

μν]



Julie Pagès — UCSD — Geometry of EFTs /1610

RGE at two-loop

For two-loop we need the expansion of the Lagrangian in quantum fluctuations to 

:                                        

:                                        

where  and  are symmetric and the completely symmetric parts of  and  vanish.  

The graphs to compute for the two-loop algebraic formula are 

𝒪(η3) δ3ℒ = Aabcηaηbηc + Aμ
a|bc(Dμη)aηbηc + Aμν

ab|c(Dμη)a(Dνη)bηc

𝒪(η4) δ4ℒ = Babcdηaηbηcηd + Bμ
a|bcd(Dμη)aηbηcηd + Bμν

ab|cd(Dμη)a(Dνη)bηcηd

A B Aμ Bμ

with 0, 1 or 2 insertions of  / X Yμν

with 2 or 3 insertions of  / X Yμν

Full results in [Jenkins, Manohar, Naterop, JP, 2308.06315]
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𝒫0

𝒫

η

11

Riemannian normal coordinates

geodesic starting at  
with tangent vector  
ending at  in unit time

𝒫0
η

𝒫

 ϕI → ϕI + ηI −
1
2

ΓI
JKηJηK −

1
3!

ΓI
JKLηIηJηK −

1
4!

ΓI
JKLMηIηJηKηM + 𝒪(η5)

Using cartesian coordinates, we find that counterterms are not covariant.  
The reason is that  is a coordinate and does not transform as a tensor, but tangent vectors do.  

Solution: use Riemannian normal coordinates (local coordinates obtained by applying the exponential map to the 
tangent space at ) for the quantum fluctuation. 

                                

 expand Lagrangian in

ϕ

𝒫0

gIJ(𝒫0) = δIJ ΓI
JK(𝒫0) = 0 gIJ(ϕ) = δIJ −

1
3

RIKJL(𝒫0)ϕKϕL

⇒
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Algebraic counterterm formulae were derived for renormalizable theories  for a flat field-space manifold. 

So we cannot apply them to our coordinates on the curved field-space manifold.  

Solution: go to local inertial frames using vielbeins and apply formulae there. 

                                              

 Since every indices are contracted, formulae are unchanged.

⇔

gIJ(ϕ) = ea
I(ϕ)eb

J(ϕ)δab (𝒟μη)I = eI
a(𝒟μη)a RIJKL = ea

Ieb
Jec

Ked
LRabcd

⇒

12

Non-coordinate basis
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RGE from geometry

Using this technique we computed the RGE for: 

up to one-loop order 

• SMEFT bosonic sector to dim 8 [Helset, Jenkins, Manohar, 2212.03253] 

• SMEFT bosonic operators from a fermion loop to dim 8 [Assi, Helset, Manohar, JP, Shen, 2307.03187] 

up to two-loop order [Jenkins, Manohar, Naterop, JP, 2310.19883] 

•  scalar EFT to dim 6          agree with [Cao, Herzog, Melia, Nepveu, 2105.12742] 

• SMEFT scalar sector to dim 6    new! 

• PT to                              agree with [Bijnens, Colangelo, Ecker, hep-ph/9907333] 

 directly usable for dim 8

O(N) →
→

χ 𝒪(p6) →

↪

 agree with [Chala, Guedes, Ramos, Santiago, 2106.05291]  
  [Das Bakshi, Chala, Díaz-Carmona, Guedes, 2205.03301] 

→
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What remains

More RGEs 

• full one-loop RGE for SMEFT at dim 8 
‣ mixed scalar-fermion loops 

‣ four-fermion operators 

‣ contributions to fermionic operators 
‣ mixed vector-fermion loops 

• two-loop counterterm formula including fermions and gauge bosons 

More derivatives 

• operators with more than one derivative on each field 
‣ Lagrange spaces? [Craig, Lee, Lu, Sutherland, 2305.09722] 
‣ jet bundle geometry? [Alminawi, Brivio, Davighi, 2308.00017] [Craig, Lee, 2307.15742] 

• derivative field redefinition 
‣ on-shell covariance of amplitudes?  [Cohen, Craig, Lu, Sutherland, 2202.06965] 

‣ geometry-kinematics duality?  [Cheung, Helset, and Parra-Martinez, 2202.06972] 

More applications 

[Assi, Helset, JP, Shen, w.i.p]
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Conclusion

Summary: 

• Field-space geometry offer an alternative, more basis-independent, description of EFTs 

• Scattering amplitudes and RGE are covariant and easier to compute 

• RGE calculations are easily generalizable to any EFT order 

Future plans: 

• Some formal developments needed to generalize to arbitrary EFTs 

• Develop phenomenology studies with geometry



Thank you!



Julie Pagès — UCSD — Geometry of EFTs /1617

Beyond scalars

Gauge fields Fermions

              

                                                                              

 

Vector-scalar field-space manifold                                 Fermion-scalar field-space supermanifold 
                                                                                      (with Grassmann coordinates) 

                                                      

                       

ℒ =
1
2

hIJ(ϕ)(Dμϕ)I(Dμϕ)J −
1
4

gAB(ϕ)FA
μνFBμν +

i
2

kp̄r(ϕ)(ψ p̄γμDμψr) + iωp̄rI(ϕ)(Dμϕ)I(ψ p̄γμψr)

− V(ϕ) − ψ p̄ℳp̄rψr + ψ p̄σμν𝒯μν
p̄r(ϕ, F)ψr

(Dμϕ)I = ∂μϕI + AB
μ tI

B(ϕ)

gij = (
hIJ 0
0 ημAμB

gAB) gab =
hIJ (ω− ψ)rI (ω+ ψ)r̄I

−(ω− ψ)pJ 0 kr̄p

−(ω+ ψ)p̄J −kp̄r 0
ω±

p̄rI = ωp̄rI ± 1
2

kp̄r,I

Killing vectors

[Helset, Jenkins, Manohar, 2210.08000]
[Assi, Helset, Manohar, JP, Shen, 2307.03187] 
[Finn, Karamitsos, Pilaftsis, 2006.05831]
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A-type counterterms
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B-type counterterms
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Background coefficients in normal coordinates

 

 

 

 

 

      sym(bcd) 

      sym(bcd) 

Xab = − Racbd(Dμϕ)c(Dμϕ)d − ∇a ∇bV

[Yμν]ab = Rabcd(Dμϕc)(Dνϕd) + ∇bta,αFα
μν

Aabc = −
1
6

∇(a ∇b ∇c)V −
1

18
(∇aRbdce + ∇bRcdae + ∇cRadbe)(Dμϕ)d(Dμϕ)e

Aμ
a|bc =

1
3

(Rabcd + Racbd)(Dμϕ)d

Aμν
ab|c = 0

Babcd = −
1
24

∇a ∇b ∇c ∇dV −
1

24
∇a ∇d Rbecf(Dμϕ)e(Dμϕ) f +

1
6

Reabf Recdg(Dμϕ) f(Dμϕ)g

Bμ
a|bcd =

1
4

(∇d Rabce)(Dμϕ)e

Bμν
ab|cd = −

1
12

ημν(Racbd + Radbc)
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Fermion one-loop RGE
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More derivatives

[Alminawi, Brivio, Davighi, 2308.00017]

Jet Bundle Geometry of Scalar Field Theories  


