LHC EFT WG Area 4

Update on the ATLAS/CMS Global Fit

Kristin Lohwasser University of Sheffield

The University Of Sheffield.

On behalf of the WG collaborators

General idea/plan of the Global Fit

- Work towards EFT combination with inputs from top, Higgs and electroweak sector
 - Use public measurements to setup the fits and validate parametrization between the different experiments in a simplified setup (no common final states, no common systematics)
 - Use validated fits to explore different questions from the other WG areas (and publish these in a WG note) (target areas 1,3,5)
 - Use this work as basis for a full combination between experiments

Potential studies

- Area 1 Targets testing the truncation and uncertainty prescriptions
 - Public note contains 4/5 proposals , does not make recommendations
 - We can directly experiment with each proposal and make comparisons to converge towards the most robust approach(s)
- Area 3 Target testing pre-trained ML models for optimal observables
 - This should be tested on single analyses / EFT coefficients first
 - But existing Area 4 combination fit is an ideal testing ground for extension to multiple processes
- Area 5+6 Target fit benchmark UV complete models mapped to SMEFT
 - This should be tested on single analyses / EFT coefficients first
 - But existing Area 4 combination fit is an ideal testing ground for extension to multiple processes
 - Test flavour assumptions

Code setup

Agreed on SMEFT conventions:

- Single insertion of dimension 6 operators in Warsaw basis
- (G F , mW , mZ) input parameter scheme
- topU3I flavour symmetry: (q p , u p , d p) with p = 1, 2 and (Q, t, b)

Git repositories:

- CMS: https://github.com/ajgilbert/eft-exercise-cms
 - → https://gitlab.cern.ch/lhc-eftwg/tools/eft-exercise-cms
- ATLAS: https://gitlab.cern.ch/nberger/smeft-combination-exercise

- Use existing differential cross section measurements:
 - Higgs sector: $H \rightarrow \gamma\gamma$ (CMS-HIG-19-015) - STXS

 $H \rightarrow \gamma\gamma + H \rightarrow 4 \ell$ (ATLAS-CONF-2020-053) - STXS

Electroweak sector:

 Top sector: single t, (t-chan)

(CMS-TOP-17-023)

Green: validated, orange: almost/newly validated, red: tbd

- Parametrisation of EFT cross sections
 - MG5_aMC@NLO+Pythia with SMEFTsim3
 - Using (public) Rivet routines
- Fit:
 - Using multivariate Gaussian PDF using predicted and measured cross-sections (available on HEP data, partially also for theory predictions)
 - Derive constraints on Wilson operators
 - → One-by-one

 \rightarrow Principle Component analysis to determine orthogonal directions in Wilson space \rightarrow e.g. fix flat directions to zero

Fitting code from both sides setup, not yet validated each step

Recent progress: ATLAS/CMS EWK validation

- Started validation of EWK parametrizations:
 - Reweighted versus direct sample production agrees within uncertainties for relevant operators
 - Small effect on the results (same fitting code, different parametrization)

The University

Sheffield.

Recent progress: ATLAS/CMS EWK validation

- Progress with Zjj: Better agreement than in the past
- Need to compare with error bars

Recent progress: Improved Fitting Framework (CMS)

Updates to EFT Fit Code to improve accuracy and speed

- Python based implementation of likelihood function
 - Options for both Numpy and PyTorch optimizations
 - Various minimization algorithms tested with analytical gradients provided
- Comparisons based on simple combination of cross-sections

Analysis	Process	# Measurement Bins
HIG 19-005	$H\gamma\gamma$	27
TOP-17-023	Single-top	5
SMP-20-005	$W\gamma$	12
ATLAS-STDM-2017-27	Zjj	11

Detailed comparison with ROOT based implementation shows excellent agreement but with 10-100x improvement in fit times

Recent progress: Improved Likelihood function (CMS)

Predictions of cross-sections based on usual EFT $\mu(\vec{c}) = \frac{\sigma}{\sigma_{SM}}(\vec{c}) = 1 + \sum_{i} A_i c_i + \sum_{i,j} B_{ij} c_i c_j$ WC expansions

Fits based on measured cross-sections + correlations

 \rightarrow Profile likelihood (q) over WCs

Can include **asymmetric uncertainties** in crosssection measurements by making the substitution(s) [1],[2]

$$\hat{\mu} = \alpha + \beta \chi + \gamma \chi^2$$

$$q \to \vec{\chi}(\boldsymbol{\rho})^{-1} \vec{\chi}$$

Several methods studied to obtain $lpha,\ eta,\ \gamma,\ oldsymbol{
ho}$

[1] https://doi.org/10.1007/jhep04(2019)064 , [2] https://arxiv.org/abs/2307.06996

$$q = -2\ln(L) = (\mu(\vec{c}) - \hat{\vec{\mu}})^T (V)^{-1} (\mu(\vec{c}) - \hat{\vec{\mu}})$$

Recent progress: Improved Likelihood function (CMS)

Results in fitted (rotated) WCs show differences when accounting for asymmetric uncertainties

Pieter Van Steenweghen

Conclusions

- Slow but steady progress
 - Higgs parametrizations validated within Higgs group
 - Progress on EWK side with validation
 - Update of CMS fitting code
- Continue with
 - Validating steps of the fitting code
 - Principle component analysis
 - Fits

