

Closing in on New Physics via the Flavor, Collider, and Electroweak Triad

Ben A. Stefanek

King's College London Theoretical Particle Physics & Cosmology (TPPC) Group

6th General Meeting of the LHC EFT Working Group CERN, Geneva *November 17, 2023*

The Higgs and the Flavor Puzzle

• Standard Model (SM) gauge sector is *flavor blind!*

 $\mathscr{G}_F(\text{gauge}) = U(3)^5 \equiv U(3)_q \times U(3)_u \times U(3)_d \times U(3)_\ell \times U(3)_e$

 The Higgs, the last piece of the SM discovered in 2012, strongly disagrees! Yukawas with Higgs are the only source of flavor violation in the SM, with a very hierarchical pattern that does not look accidental- SM flavor puzzle.

The Higgs and the Flavor Puzzle

• Standard Model (SM) gauge sector is *flavor blind!*

 $\mathscr{G}_F(\text{gauge}) = U(3)^5 \equiv U(3)_q \times U(3)_u \times U(3)_d \times U(3)_\ell \times U(3)_\ell$

 The Higgs, the last piece of the SM discovered in 2012, strongly disagrees! Yukawas with Higgs are the only source of flavor violation in the SM, with a very hierarchical pattern that does not look accidental- SM flavor puzzle.

Is there a connection between the nature of the Higgs boson and the SM flavor puzzle? Clues toward the structure and scale of new physics (NP)?

Hints of NP structure: Flavor symmetries of the SM

• Standard Model (SM) gauge sector is *flavor blind!*

 $\mathscr{G}_F(\mathrm{SM}) = U(3)^5 \equiv U(3)_q \times U(3)_u \times U(3)_d \times U(3)_\ell \times U(3)_e$

Hints of NP structure: Flavor symmetries of the SM

Standard Model (SM) gauge sector is *flavor blind!*

 $\mathscr{G}_F(\mathrm{SM}) = U(3)^5 \equiv U(3)_q \times U(3)_u \times U(3)_d \times U(3)_\ell \times U(3)_e$

• But, since the light family Yukawa couplings are very small:

 $\mathscr{G}_F(\mathrm{SM}) \approx U(2)^5 \equiv U(2)_q \times U(2)_u \times U(2)_d \times U(2)_\ell \times U(2)_\ell$

 $U(2)^5$ is a good approximate symmetry of the SM!

Hints of NP structure: Flavor symmetries of the SM

• Standard Model (SM) gauge sector is *flavor blind!*

 $\mathscr{G}_F(\mathrm{SM}) = U(3)^5 \equiv U(3)_q \times U(3)_u \times U(3)_d \times U(3)_\ell \times U(3)_e$

• But, since the light family Yukawa couplings are very small:

$$\mathscr{G}_F(\mathrm{SM}) \approx U(2)^5 \equiv U(2)_q \times U(2)_u \times U(2)_d \times U(2)_\ell \times U(2)_\ell$$

Or Perhaps there is NP responsible for this pattern that follows the same structure....

Hints of NP structure: Data

Observable

• No deviations in *flavor data:* the accidental approximate symmetries of the SM should also be good symmetries of NP. High scales could be a mirage, but one unambiguous message is that there cannot be any large breaking of $U(2)^5$ at nearby energy scales.

Hints of NP structure: Data

Observable

- No deviations in *flavor data:* the accidental approximate symmetries of the SM should also be good symmetries of NP. High scales could be a mirage, but one unambiguous message is that there cannot be any large breaking of $U(2)^5$ at nearby energy scales.
- Similarly, *direct searches at the LHC* tell us that NP does not couple strongly to valence quarks at nearby energy scales.

Hints of NP structure: Data

Observable

- No deviations in *flavor data:* the accidental approximate symmetries of the SM should also be good symmetries of NP. High scales could be a mirage, but one unambiguous message is that there cannot be any large breaking of $U(2)^5$ at nearby energy scales.
- Similarly, *direct searches at the LHC* tell us that NP does not couple strongly to valence quarks at nearby energy scales.
- Interestingly, these two hints point toward a coherent hypothesis for the structure of NP.

The hypothesis of (dominantly) third-family NP

 New physics is NOT flavor universal- there could be new flavor non-universal interactions as low as the TeV scale coupled dominantly to the third family. NP coupled to Higgs & top is what we need to address the EW hierarchy problem.

[R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone, D. Straub, <u>1105.2296</u>]

The hypothesis of (dominantly) third-family NP

- New physics is NOT flavor universal- there could be new flavor non-universal interactions as low as the TeV scale coupled dominantly to the third family. NP coupled to Higgs & top is what we need to address the EW hierarchy problem.
- These new interactions see flavor just like the SM Higgs. They could be connected to a low scale solution to the SM flavor puzzle. (see e.g. Davighi and BAS, <u>arXiv: 2305.16280</u>)

The hypothesis of (dominantly) third-family NP

- New physics is NOT flavor universal- there could be new flavor non-universal interactions as low as the TeV scale coupled dominantly to the third family. NP coupled to Higgs & top is what we need to address the EW hierarchy problem.
- These new interactions see flavor just like the SM Higgs. They could be connected to a low scale solution to the SM flavor puzzle. (see e.g. Davighi and BAS, <u>arXiv: 2305.16280</u>)
- NP dominantly coupled to the third family quarks (+ leptons) enjoys an approximate $U(2)^3$ ($U(2)^5$) flavor symmetry, just like the SM Yukawa couplings.

All new physics must confront a triad of bounds

All new physics must confront a triad of bounds

• U(2) helps pass flavor + collider bounds, but is less effective against EWPT.

All new physics must confront a triad of bounds

• U(2) helps pass flavor + collider bounds, but is less effective against EWPT.

A future EW precision machine is ideal to test the U(2) hypothesis!

SMEFT in the Exact U(2) Limit

- SMEFT with 3 generations has 1350 + 1149 = 2499 independent WC's at dim-6.
- In the exact $U(2)^5$ limit, this is reduced to 124 + 23 = 147 independent WC's.

		$U(2)^5$ [terms summed up to different orders]												
Operators	Exa	act	$\mathcal{O}(V$	$^{/1})$	O(V	$^{/2})$	$\int \mathcal{O}(V$	$^{1},\Delta^{1})$	$\int \mathcal{O}(V$	$^{2},\Delta^{1})$	$\int \mathcal{O}(V$	$^{2},\Delta^{1}V^{1})$	$\int \mathcal{O}(V$	$^{3},\Delta^{1}V^{1})$
Class 1–4	9	6	9	6	9	6	9	6	9	6	9	6	9	6
$\psi^2 H^3$	3	3	6	6	6	6	9	9	9	9	12	12	12	12
$\psi^2 X H$	8	8	16	16	16	16	24	24	24	24	32	32	32	32
$\psi^2 H^2 D$	15	1	19	5	23	5	19	5	23	5	28	10	28	10
$(\bar{L}L)(\bar{L}L)$	23	_	40	17	67	24	40	17	67	24	67	24	74	31
$(\bar{R}R)(\bar{R}R)$	29	—	29	—	29	_	29	_	29	_	53	24	53	24
$(\bar{L}L)(\bar{R}R)$	32	—	48	16	64	16	53	21	69	21	90	42	90	42
$(\bar{L}R)(\bar{R}L)$	1	1	3	3	4	4	5	5	6	6	10	10	10	10
$(\bar{L}R)(\bar{L}R)$	4	4	12	12	16	16	24	24	28	28	48	48	48	48
total:	124	23	182	81	234	93	212	111	264	123	349	208	356	215

Table 6: Number of independent operators in the SMEFT assuming a minimally broken $U(2)^5$ symmetry, including breaking terms up to $\mathcal{O}(V^3, \Delta^1 V^1)$. Notations as in Table 1.

[D. A. Faroughy, G. Isidori, F. Wilsch, K. Yamamoto, arXiv:2005.05366]

SMEFT in the Exact U(2) Limit

- SMEFT with 3 generations has 1350 + 1149 = 2499 independent WC's at dim-6.
- In the exact $U(2)^5$ limit, this is reduced to 124 + 23 = 147 independent WC's.

		$U(2)^5$ [terms summed up to different orders]										ers]		
Operators	Exa	act	$\mathcal{O}(V$	$^{/1})$	O(V	$^{\prime 2})$	$\mathcal{O}(V$	$^{1},\Delta^{1})$	$\int \mathcal{O}(V)$	$^{2},\Delta^{1})$	$\int \mathcal{O}(V$	$^{2},\Delta^{1}V^{1})$	$\mathcal{O}(V)$	$^{3},\Delta^{1}V^{1})$
Class 1–4	9	6	9	6	9	6	9	6	9	6	9	6	9	6
$\psi^2 H^3$	3	3	6	6	6	6	9	9	9	9	12	12	12	12
$\psi^2 X H$	8	8	16	16	16	16	24	24	24	24	32	32	32	32
$\psi^2 H^2 D$	15	1	19	5	23	5	19	5	23	5	28	10	28	10
$(\bar{L}L)(\bar{L}L)$	23	_	40	17	67	24	40	17	67	24	67	24	74	31
$(\bar{R}R)(\bar{R}R)$	29	_	29	_	29	_	29	_	29	_	53	24	53	24
$(\bar{L}L)(\bar{R}R)$	32	_	48	16	64	16	53	21	69	21	90	42	90	42
$(\bar{L}R)(\bar{R}L)$	1	1	3	3	4	4	5	5	6	6	10	10	10	10
$(\bar{L}R)(\bar{L}R)$	4	4	12	12	16	16	24	24	28	28	48	48	48	48
total:	124	23	182	81	234	93	212	111	264	123	349	208	356	215

Table 6: Number of independent operators in the SMEFT assuming a minimally broken $U(2)^5$ symmetry, including breaking terms up to $\mathcal{O}(V^3, \Delta^1 V^1)$. Notations as in Table 1.

• Focus on the 124 CP-even independent WC's in the exact $U(2)^5$ limit. Makes an exhaustive phenomenological analysis tractable.

[D. A. Faroughy, G. Isidori, F. Wilsch, K. Yamamoto, arXiv:2005.05366]

• WC's entering observables are run up to a reference high scale of $\Lambda_{NP} = 3$ TeV. We then impose $U(2)^5$ flavor symmetry on the high-scale WC's, e.g:

$$\begin{split} [C_{Hq}^{(1)}]_{11}(\mu_{\rm EW}) & \to & 0.906 \, {\rm CHq1[l]} - 0.022 \, {\rm Cqq1[l, h, h, l]} - \\ & 0.189 \, {\rm Cqq1[l, l, h, h]} - 0.004 \, {\rm Cqq1[l, l, p, p]} - \\ & 0.004 \, ({\rm Cqq1[l, l, p, p]} + {\rm Cqq1[l, p, p, l]}) - \\ & 0.071 \, {\rm Cqq3[l, h, h, l]} + 0.009 \, {\rm Cqq3[l, l, h, h]} + \\ & 0.089 \, {\rm Cqu1[l, l, h, h]} + 0.004 \, {\rm Cqu8[l, l, h, h]} + \ldots \end{split}$$

• WC's entering observables are run up to a reference high scale of $\Lambda_{NP} = 3$ TeV. We then impose $U(2)^5$ flavor symmetry on the high-scale WC's, e.g:

$$\begin{split} [C_{Hq}^{(1)}]_{11}(\mu_{\rm EW}) & \to & 0.906 \, {\rm CHq1[l]} - 0.022 \, {\rm Cqq1[l, h, h, l]} - \\ & 0.189 \, {\rm Cqq1[l, l, h, h]} - 0.004 \, {\rm Cqq1[l, l, p, p]} - \\ & 0.004 \, ({\rm Cqq1[l, l, p, p]} + {\rm Cqq1[l, p, p, l]}) - \\ & 0.071 \, {\rm Cqq3[l, h, h, l]} + 0.009 \, {\rm Cqq3[l, l, h, h]} + \\ & 0.089 \, {\rm Cqu1[l, l, h, h]} + 0.004 \, {\rm Cqu8[l, l, h, h]} + ... \end{split}$$

• For EWPT and direct searches, which constrain only the flavor-conserving WC's, the exact $U(2)^5$ limit is already sufficient.

• WC's entering observables are run up to a reference high scale of $\Lambda_{NP} = 3$ TeV. We then impose $U(2)^5$ flavor symmetry on the high-scale WC's, e.g:

$$\begin{split} [C_{Hq}^{(1)}]_{11}(\mu_{\rm EW}) & \to & 0.906 \, {\rm CHq1[l]} - 0.022 \, {\rm Cqq1[l, h, h, l]} - \\ & 0.189 \, {\rm Cqq1[l, l, h, h]} - 0.004 \, {\rm Cqq1[l, l, p, p]} - \\ & 0.004 \, ({\rm Cqq1[l, l, p, p]} + {\rm Cqq1[l, p, p, l]}) - \\ & 0.071 \, {\rm Cqq3[l, h, h, l]} + 0.009 \, {\rm Cqq3[l, l, h, h]} + \\ & 0.089 \, {\rm Cqu1[l, l, h, h]} + 0.004 \, {\rm Cqu8[l, l, h, h]} + ... \end{split}$$

- For EWPT and direct searches, which constrain only the flavor-conserving WC's, the exact $U(2)^5$ limit is already sufficient.
- Flavor-violating effects taken into account by considering the cases where the $U(2)^5$ basis corresponds to the 1) down-quark mass basis and 2) up-quark mass basis.

• WC's entering observables are run up to a reference high scale of $\Lambda_{NP} = 3$ TeV. We then impose $U(2)^5$ flavor symmetry on the high-scale WC's, e.g:

$$\begin{split} [C_{Hq}^{(1)}]_{11}(\mu_{\rm EW}) & \to & 0.906 \, {\rm CHq1[l]} - 0.022 \, {\rm Cqq1[l, h, h, l]} - \\ & 0.189 \, {\rm Cqq1[l, l, h, h]} - 0.004 \, {\rm Cqq1[l, l, p, p]} - \\ & 0.004 \, ({\rm Cqq1[l, l, p, p]} + {\rm Cqq1[l, p, p, l]}) - \\ & 0.071 \, {\rm Cqq3[l, h, h, l]} + 0.009 \, {\rm Cqq3[l, l, h, h]} + \\ & 0.089 \, {\rm Cqu1[l, l, h, h]} + 0.004 \, {\rm Cqu8[l, l, h, h]} + ... \end{split}$$

- For EWPT and direct searches, which constrain only the flavor-conserving WC's, the exact $U(2)^5$ limit is already sufficient.
- Flavor-violating effects taken into account by considering the cases where the $U(2)^5$ basis corresponds to the 1) down-quark mass basis and 2) up-quark mass basis.
- We then construct a likelihood as a function of the high-scale $U(2)^5$ invariants and switch on one at a time to obtain bounds.

Pheno analysis: Our observables

EW Precision

• W-pole observables

- [V. Bresó-Pla, A. Falkowski, M. González-Alonso, 2103.12074]
- Z-pole observables [L. Allwicher, G. Isidori, J. M. Lizana, N. Selimovic, BAS, 2302.11584]
- Higgs signal strengths + LFU tests in τ -decays

Direct searches

- LHC Drell-Yan $pp \to \ell \ell$ and mono-lepton $pp \to \ell \nu$
- LHC 4-quark observables
 LEP 4-lepton ee → ℓℓ
 [L. Allwicher, D. A. Faroughy, F. Jaffredo, O. Sumensari, F. Wilsch, 2207.10756]
 [Ethier, Magni, Maltoni, Mantani, Nocera, Rojo, Slade, Vryonidou, Zhang, 2105.00006]

Flavor Bounds

- $\Delta F = 1 (B \to X_s \gamma, B \to K \nu \bar{\nu}, K \to \pi \nu \bar{\nu}, B \to K^{(*)} \mu^+ \mu^-, B_{s,d} \to \mu^+ \mu^-)$
- $\Delta F = 2 (B_{s,d}\text{-mixing}, K\text{-mixing}, D\text{-mixing})$
- Charged-current B-decays (R_D , R_{D^*} , $B_{u,c} \rightarrow \tau \nu$)

- With no RGE, only 16 of 124 operators constrained on the Z-pole.
- Including RGE, we have 120 of 124, 38 with bounds ≥ 1 TeV.

No RGE

#	Wilson Coef.	$[0bs]_{bound}$	$\Lambda_{bound} [TeV]$
1	cHWB	A _b ^{FB}	9.63
2	CHl1[l]	$\sigma_{\sf had}$	8.07
3	CHl3[l]	A _b ^{FB}	7.96
4	CHe[l]	$\sigma_{\sf had}$	6.93
5	cHD	A _b ^{FB}	5.74
6	CHq3[l]	Rτ	5.73
7	CHl1[h]	R _τ	4.57
8	CHl3[h]	Rτ	4.48
9	Cll[l, p, p, l]	A _b ^{FB}	4.43
10	CHe[h]	Rτ	3.97
11	CHq3[h]	R _b	3.43
12	CHq1[h]	R _b	3.43
13	CHu[l]	Rτ	2.58
14	CHq1[l]	R _c	2.07
15	CHd[l]	Rτ	1.81
16	CHd[h]	R _b	1.4

- With no RGE, only 16 of 124 operators constrained on the Z-pole.
- Including RGE, we have 120 of 124, 38 with bounds $\gtrsim 1$ TeV.

No RGE

Ħ	Wilson Coef.	[Obs] _{bound}	$\Lambda_{bound} [TeV]$
1	cHWB	A _b ^{FB}	9.63
2	CHl1[l]	$\sigma_{\sf had}$	8.07
3	CHl3[l]	A _b FB	7.96
4	CHe[l]	$\sigma_{\sf had}$	6.93
5	cHD	A _b ^{FB}	5.74
6	CHq3[l]	R _τ	5.73
7	CHl1[h]	R _τ	4.57
8	CHl3[h]	Rτ	4.48
9	Cll[l, p, p, l]	A _b FB	4.43
10	CHe[h]	Rτ	3.97
11	CHq3[h]	R _b	3.43
12	CHq1[h]	R _b	3.43
13	CHu[l]	R _τ	2.58
14	CHq1[l]	R _c	2.07
15	CHd[l]	Rτ	1.81
16	CHd[h]	R _b	1.4

#	Wilson Coef.	[Obs] _{bound}	$\Lambda_{bound} [TeV]$	$\Lambda_{bound} [TeV] (LL)$	$\Delta_{Full-LL}(\$)$
1	cHWB	AbFB	8.98	8.78	2.2
2	CHl3[l]	$\sigma_{\sf had}$	7.75	7.64	1.4
3	CHl1[l]	$\sigma_{\sf had}$	7.65	7.51	1.8
4	CHe[l]	$\sigma_{\sf had}$	6.6	6.48	1.8
5	CHq3[l]	Rτ	5.56	5.48	1.4
6	cHD	A_b^{FB}	5.05	4.71	6.7
7	Cll[l, p, p, l]	A _b ^{FB}	4.52	4.52	0.
8	CHl1[h]	Rτ	4.37	4.3	1.6
9	CHl3[h]	R _τ	4.36	4.3	1.4
10	CHe[h]	Rτ	3.76	3.68	2.1
11	CHq1[h]	Γz	3.74	4.34	-16.
12	CHq3[h]	R _b	3.48	3.53	-1.4
13	CHu[h]	A _b ^{FB}	3.04	3.99	-31.3
14	Clq1[l, l, h, h]	$\sigma_{\sf had}$	2.46	2.87	-16.7
15	CHu[l]	Rτ	2.43	2.39	1.6
16	Clq3[l, l, h, h]	A _b ^{FB}	2.41	2.72	-12.9
17	Clu[l, l, h, h]	$\sigma_{\sf had}$	2.39	2.81	-17.6
18	CuB[h]	A _b FB	2.38	2.79	-17.2
19	CuW[h]	A _b ^{FB}	2.35	2.67	-13.6
20	Cqq3[l, l, h, h]	R _b	2.28	2.61	-14.5
21	Cqe[h, h, l, l]	$\sigma_{\sf had}$	2.12	2.47	-16.5
22	Ceu[l, l, h, h]	$\sigma_{\sf had}$	2.08	2.41	-15.9
23	CHq1[l]	R _c	1.94	1.9	2.1
24	CHd[l]	Rτ	1.71	1.68	1.8
25	Cqq1[h, h, h, h]	R _b	1.6	1.75	-9.4
26	Cqq3[l, l, p, p]	Rτ	1.49	1.5	-0.7
27	Clq1[h, h, h, h]	Rτ	1.43	1.63	-14.
28	Clu[h, h, h, h]	R_{τ}	1.36	1.59	-16.9
29	Clq3[h, h, h, h]	Rτ	1.32	1.47	-11.4
30	CHd[h]	R _b	1.31	1.29	1.5
31	Cqu1[h, h, h, h]	Γz	1.25	1.2	4.
32	Cuu[h, h, h, h]	AbFB	1.24		
33	Cqe[h, h, h, h]	Rτ	1.2	1.41	-17.5
34	Ceu[h, h, h, h]	Rτ	1.18	1.38	-16.9
35	Cqq3[h, h, h, h]	m _W	1.16	0.77	33.6
36	Clq3[l, l, p, p]	$\sigma_{\sf had}$	1.08	1.09	-0.9
37	Cuu[l, l, h, h]	Rτ	1.07	1.27	-18.7
38	Cqq3[l, h, h, l]	R_{τ}	0.95	1.26	-32.6

- With no RGE, only 16 of 124 operators constrained on the Z-pole.
- Including RGE, we have 120 of 124, 38 with bounds ≥ 1 TeV.
- Important effects come from operators w/ third-family quarks
 running strongly with y_t into operators
 directly constrained on the Z-pole:

Ħ	Wilson Coef.	[Obs] _{bound}	$\Lambda_{bound} [TeV]$	$\Lambda_{bound} [TeV] (LL)$	$\Delta_{Full-LL}(\$)$
1	cHWB	A _b ^{FB}	8.98	8.78	2.2
2	CH13[1]	$\sigma_{\sf had}$	7.75	7.64	1.4
3	CHl1[l]	$\sigma_{\sf had}$	7.65	7.51	1.8
4	CHe[l]	$\sigma_{\sf had}$	6.6	6.48	1.8
5	CHq3[l]	R _τ	5.56	5.48	1.4
6	cHD	A _b ^{FB}	5.05	4.71	6.7
7	Cll[l, p, p, l]	A _b ^{FB}	4.52	4.52	0.
8	CHl1[h]	Rτ	4.37	4.3	1.6
9	CHl3[h]	Rτ	4.36	4.3	1.4
10	CHe[h]	Rτ	3.76	3.68	2.1
11	CHq1[h]	Γz	3.74	4.34	-16.
12	CHq3[h]	R _b	3.48	3.53	-1.4
13	CHu[h]	AbFB	3.04	3.99	-31.3
14	Clq1[l, l, h, h]	$\sigma_{\sf had}$	2.46	2.87	-16.7
15	CHu[l]	R _τ	2.43	2.39	1.6
16	Clq3[l, l, h, h]	AbFB	2.41	2.72	-12.9
17	Clu[l, l, h, h]	$\sigma_{\sf had}$	2.39	2.81	-17.6
18	CuB[h]	AbFB	2.38	2.79	-17.2
19	CuW[h]	AbFB	2.35	2.67	-13.6
20	Cqq3[l, l, h, h]	R _b	2.28	2.61	-14.5
21	Cqe[h, h, l, l]	$\sigma_{\sf had}$	2.12	2.47	-16.5
22	Ceu[l, l, h, h]	$\sigma_{\sf had}$	2.08	2.41	-15.9
23	CHq1[l]	R _c	1.94	1.9	2.1
24	CHd[l]	R _τ	1.71	1.68	1.8
25	Cqq1[h, h, h, h]	R _b	1.6	1.75	-9.4
26	Cqq3[l, l, p, p]	R _τ	1.49	1.5	-0.7
27	Clq1[h, h, h, h]	R _τ	1.43	1.63	-14.
28	Clu[h, h, h, h]	Rτ	1.36	1.59	-16.9
29	Clq3[h, h, h, h]	R _τ	1.32	1.47	-11.4
30	CHd[h]	R _b	1.31	1.29	1.5
31	Cqu1[h, h, h, h]	Γz	1.25	1.2	4.
32	Cuu[h, h, h, h]	AbFB	1.24		
33	Cqe[h, h, h, h]	R _τ	1.2	1.41	-17.5
34	Ceu[h, h, h, h]	Rτ	1.18	1.38	-16.9
35	Cqq3[h, h, h, h]	m _w	1.16	0.77	33.6
36	Clq3[l, l, p, p]	$\sigma_{\sf had}$	1.08	1.09	-0.9
37	Cuu[l, l, h, h]	R _τ	1.07	1.27	-18.7
38	Cqq3[l, h, h, l]	Rτ	0.95	1.26	-32.6
	-		•		

- Including RGE, we have 120 of 124, 38 with bounds ≥ 1 TeV.
- Resummation is important, even from $\Lambda_{\rm NP} = 3$ TeV.

#	Wilson Coef.	$[0bs]_{bound}$	$\Lambda_{bound} [TeV]$	$\Lambda_{bound} [TeV] (LL)$	$\Delta_{Full-LL}(\$)$
1	cHWB	A _b ^{FB}	8.98	8.78	2.2
2	CHl3[l]	$\sigma_{\sf had}$	7.75	7.64	1.4
3	CHl1[l]	$\sigma_{\sf had}$	7.65	7.51	1.8
4	CHe[l]	$\sigma_{\sf had}$	6.6	6.48	1.8
5	CHq3[l]	R _τ	5.56	5.48	1.4
6	cHD	A _b ^{FB}	5.05	4.71	6.7
7	Cll[l, p, p, l]	A _b ^{FB}	4.52	4.52	0.
8	CHl1[h]	R _τ	4.37	4.3	1.6
9	CHl3[h]	R _τ	4.36	4.3	1.4
10	CHe[h]	R _τ	3.76	3.68	2.1
11	CHq1[h]	Γz	3.74	4.34	-16.
12	CHq3[h]	R _b	3.48	3.53	-1.4
13	CHu[h]	A _b ^{FB}	3.04	3.99	-31.3
14	Clq1[l, l, h, h]	$\sigma_{\sf had}$	2.46	2.87	-16.7
15	CHu[l]	R _τ	2.43	2.39	1.6
16	Clq3[l, l, h, h]	A _b ^{FB}	2.41	2.72	-12.9
17	Clu[l, l, h, h]	$\sigma_{\sf had}$	2.39	2.81	-17.6
18	CuB[h]	A _b ^{FB}	2.38	2.79	-17.2
19	CuW[h]	A _b ^{FB}	2.35	2.67	-13.6
20	Cqq3[l, l, h, h]	R _b	2.28	2.61	-14.5
21	Cqe[h, h, l, l]	$\sigma_{\sf had}$	2.12	2.47	-16.5
22	Ceu[l, l, h, h]	$\sigma_{\sf had}$	2.08	2.41	-15.9
23	CHq1[l]	R _c	1.94	1.9	2.1
24	CHd[l]	Rτ	1.71	1.68	1.8
25	Cqq1[h, h, h, h]	R _b	1.6	1.75	-9.4
26	Cqq3[l, l, p, p]	Rτ	1.49	1.5	-0.7
27	Clq1[h, h, h, h]	Rτ	1.43	1.63	-14.
28	Clu[h, h, h, h]	Rτ	1.36	1.59	-16.9
29	Clq3[h, h, h, h]	Rτ	1.32	1.47	-11.4
30	CHd[h]	R _b	1.31	1.29	1.5
31	Cqu1[h, h, h, h]	Γz	1.25	1.2	4.
32	Cuu[h, h, h, h]	AbFB	1.24		
33	Cqe[h, h, h, h]	Rτ	1.2	1.41	-17.5
34	Ceu[h, h, h, h]	Rτ	1.18	1.38	-16.9
35	Cqq3[h, h, h, h]	m _W	1.16	0.77	33.6
36	Clq3[l, l, p, p]	$\sigma_{\sf had}$	1.08	1.09	-0.9
37	Cuu[l, l, h, h]	Rτ	1.07	1.27	-18.7
38	Cqq3[l, h, h, l]	Rτ	0.95	1.26	-32.6

[Allwicher, Cornella, Isidori, BAS, <u>2311.00020</u>] [Allwicher, Isidori, Lizana, Selimovic, BAS, <u>2302.11584</u>]

- Including RGE, we have 120 of 124, 38 with bounds $\gtrsim 1$ TeV.
- Resummation is important, even from $\Lambda_{\rm NP} = 3$ TeV.

#	Wilson Coef.	$[0bs]_{bound}$	$\Lambda_{bound} [TeV]$	$\Lambda_{bound} [TeV] (LL)$	$\Delta_{Full-LL}(\$)$
1	cHWB	AbFB	8.98	8.78	2.2
2	CHl3[l]	$\sigma_{\sf had}$	7.75	7.64	1.4
3	CHl1[l]	$\sigma_{\sf had}$	7.65	7.51	1.8
4	CHe[l]	$\sigma_{\sf had}$	6.6	6.48	1.8
5	CHq3[l]	Rτ	5.56	5.48	1.4
6	cHD	A _b ^{FB}	5.05	4.71	6.7
7	Cll[l, p, p, l]	A _b ^{FB}	4.52	4.52	0.
8	CHl1[h]	R _τ	4.37	4.3	1.6
9	CHl3[h]	R _τ	4.36	4.3	1.4
10	CHe[h]	Rτ	3.76	3.68	2.1
11	CHq1[h]	Γz	3.74	4.34	-16.
12	CHq3[h]	R _b	3.48	3.53	-1.4
13	CHu[h]	AbFB	3.04	3.99	-31.3
14	Clq1[l, l, h, h]	$\sigma_{\sf had}$	2.46	2.87	-16.7
15	CHu[l]	Rτ	2.43	2.39	1.6
16	Clq3[l, l, h, h]	AbFB	2.41	2.72	-12.9
17	Clu[l, l, h, h]	$\sigma_{\sf had}$	2.39	2.81	-17.6
18	CuB[h]	A _b ^{FB}	2.38	2.79	-17.2
19	CuW[h]	A _b ^{FB}	2.35	2.67	-13.6
20	Cqq3[l, l, h, h]	R _b	2.28	2.61	-14.5
21	Cqe[h, h, l, l]	$\sigma_{\sf had}$	2.12	2.47	-16.5
22	Ceu[l, l, h, h]	$\sigma_{\sf had}$	2.08	2.41	-15.9
23	CHq1[l]	R _c	1.94	1.9	2.1
24	CHd[l]	Rτ	1.71	1.68	1.8
25	Cqq1[h, h, h, h]	R _b	1.6	1.75	-9.4
26	Cqq3[l, l, p, p]	Rτ	1.49	1.5	-0.7
27	Clq1[h, h, h, h]	Rτ	1.43	1.63	-14.
28	Clu[h, h, h, h]	Rτ	1.36	1.59	-16.9
29	Clq3[h, h, h, h]	Rτ	1.32	1.47	-11.4
30	CHd[h]	R _b	1.31	1.29	1.5
31	Cqu1[h, h, h, h]	Γz	1.25	1.2	4.
32	Cuu[h, h, h, h]	Ab	1.24		
33	Cqe[h, h, h, h]	R _τ	1.2	1.41	-17.5
34	Ceu[h, h, h, h]	Rτ	1.18	1.38	-16.9
35	Cqq3[h, h, h, h]	m _W	1.16	0.77	33.6
36	Clq3[l, l, p, p]	$\sigma_{\sf had}$	1.08	1.09	-0.9
37	Cuu[l, l, h, h]	Rτ	1.07	1.27	-18.7
38	Cqq3[l, h, h, l]	Rτ	0.95	1.26	-32.6

[Allwicher, Cornella, Isidori, BAS, 2311.00020] [Allwicher, Isidori, Lizana, Selimovic, BAS, 2302.11584]

- Including RGE, we have 120 of 124, 38 with bounds ≥ 1 TeV.
- Resummation is important, even from $\Lambda_{NP} = 3$ TeV.

$$[\mathcal{C}_{HD}]^{\mathrm{NLL}} \approx \frac{4N_c^2 y_t^4}{(16\pi^2)^2} \,\mathcal{C}_{uu} \log^2\left(\frac{\mu^2}{\Lambda_{\mathrm{NP}}^2}\right)$$

[Allwicher, Cornella, Isidori, BAS, <u>2311.00020</u>] [Allwicher, Isidori, Lizana, Selimovic, BAS, <u>2302.11584</u>]

♯	Wilson Coef.	$[0bs]_{bound}$	$\Lambda_{bound} [TeV]$	$\Lambda_{bound} [TeV] (LL)$	$\Delta_{Full-LL}(\$)$
1	cHWB	A _b ^{FB}	8.98	8.78	2.2
2	CHl3[l]	$\sigma_{\sf had}$	7.75	7.64	1.4
3	CHl1[l]	$\sigma_{\sf had}$	7.65	7.51	1.8
4	CHe[l]	$\sigma_{\sf had}$	6.6	6.48	1.8
5	CHq3[l]	Rτ	5.56	5.48	1.4
6	cHD	A _b ^{FB}	5.05	4.71	6.7
7	Cll[l, p, p, l]	A _b ^{FB}	4.52	4.52	0.
8	CHl1[h]	Rτ	4.37	4.3	1.6
9	CHl3[h]	Rτ	4.36	4.3	1.4
10	CHe[h]	R _τ	3.76	3.68	2.1
11	CHq1[h]	Γz	3.74	4.34	-16.
12	CHq3[h]	R _b	3.48	3.53	-1.4
13	CHu[h]	A _b ^{FB}	3.04	3.99	-31.3
14	Clq1[l, l, h, h]	$\sigma_{\sf had}$	2.46	2.87	-16.7
15	CHu[l]	Rτ	2.43	2.39	1.6
16	Clq3[l, l, h, h]	A _b ^{FB}	2.41	2.72	-12.9
17	Clu[l, l, h, h]	$\sigma_{\sf had}$	2.39	2.81	-17.6
18	CuB[h]	A _b ^{FB}	2.38	2.79	-17.2
19	CuW[h]	A _b ^{FB}	2.35	2.67	-13.6
20	Cqq3[l, l, h, h]	R _b	2.28	2.61	-14.5
21	Cqe[h, h, l, l]	$\sigma_{\sf had}$	2.12	2.47	-16.5
22	Ceu[l, l, h, h]	$\sigma_{\sf had}$	2.08	2.41	-15.9
23	CHq1[l]	R _c	1.94	1.9	2.1
24	CHd[l]	Rτ	1.71	1.68	1.8
25	Cqq1[h, h, h, h]	R _b	1.6	1.75	-9.4
26	Cqq3[l, l, p, p]	Rτ	1.49	1.5	-0.7
27	Clq1[h, h, h, h]	Rτ	1.43	1.63	-14.
28	Clu[h, h, h, h]	Rτ	1.36	1.59	-16.9
29	Clq3[h, h, h, h]	Rτ	1.32	1.47	-11.4
30	CHd[h]	R _b	1.31	1.29	1.5
31	Cqu1[h, h, h, h]	Γz	1.25	1.2	4.
32	Cuu[h, h, h, h]	AbFB	1.24		
33	Cqe[h, h, h, h]	Rτ	1.2	1.41	-17.5
34	Ceu[h, h, h, h]	R _τ	1.18	1.38	-16.9
35	Cqq3[h, h, h, h]	m _W	1.16	0.77	33.6
36	Clq3[l, l, p, p]	$\sigma_{\sf had}$	1.08	1.09	-0.9
37	Cuu[l, l, h, h]	Rτ	1.07	1.27	-18.7
38	Cqq3[l, h, h, l]	R _τ	0.95	1.26	-32.6

Current Bounds: EWPT + Flavor + Direct Searches

Current Bounds: EWPT + Flavor + Direct Searches

Projection: Tera-Z + Flavor + Direct Searches

[Allwicher, Cornella, Isidori, BAS, 2311.00020]

14

Projection: Tera-Z + Flavor + Direct Searches

[Allwicher, Cornella, Isidori, BAS, 2311.00020]

TeV

50 r

Projection: Tera-Z + Flavor + Direct Searches

[Allwicher, Cornella, Isidori, BAS, 2311.00020]

NP coupled to the light families: Bounds O(5-10) TeV

[Allwicher, Cornella, Isidori, BAS, 2311.00020]

NP coupled to the light families: Bounds O(5-10) TeV

[Allwicher, Cornella, Isidori, BAS, 2311.00020]

Hypothesis of dominantly third-family NP

📕 down 📕 up 📑 EW 🗖 collider

[Allwicher, Cornella, Isidori, BAS, 2311.00020]

Third-family NP: Higgs couplings

EW collider down up TeV 10 $\epsilon_{\rm loop} = \frac{1}{16\pi^2}$ • Add one ϵ_H for every Higgs field in the operator. 8 $\epsilon_Q = 0.16$ $\epsilon_L = 0.40$ 6 $\epsilon_{H} = 0.31$ 4 2 0 $\mathcal{C}_{H\ell}^{(3)[ii]} = \mathcal{C}_{Hq}^{(3)[ii]} = \mathcal{C}_{Hq}^{(3)[ii]} = \mathcal{C}_{Hq}^{(3)[ii]} = \mathcal{C}_{Hq}^{(3)[ii]} = \mathcal{C}_{Hq}^{(3)[ii]} = \mathcal{C}_{dB}^{(3)[ii]} = \mathcal{C}_{dB}^{(3)[ii]} = \mathcal{C}_{dB}^{(3)[ii]} = \mathcal{C}_{dB}^{(3)[ii]} = \mathcal{C}_{dB}^{(3)[ii]} = \mathcal{C}_{dQ}^{(3)[ii]} = \mathcal{C}_{dQ}^{(3)[ii]}$ $(3)[33]^{-}$

[Allwicher, Cornella, Isidori, BAS, 2311.00020]

📕 flavor 🔛 EW 📃 collider

📕 flavor 🔛 EW 🔛 collider

flavor EW

📕 flavor 🔛 EW 🔛 collider

[Allwicher, Cornella, Isidori, BAS, 2311.00020]

📕 flavor 🔛 EW 🔛 collider

📕 flavor 🔛 EW 🔛 collider

[Allwicher, Cornella, Isidori, BAS, 2311.00020]

Ben A. Stefanek | Closing in on New Physics via the Flavor, Collider, and Electroweak Triad

 $\mathcal{C}^{[333]}_{eH}$

Tera-Z run will push even this scenario to O(10) TeV!

📕 flavor 🔛 EW 🔛 collider

[Allwicher, Cornella, Isidori, BAS, 2311.00020]

Tera-Z run will push even this scenario to O(10) TeV!

📕 flavor 🛛 🗧 EW 🔄 collider

[Allwicher, Cornella, Isidori, BAS, 2311.00020]

 If we do not want to completely give up hope on the Higgs mass being fundamentally calculable and not fine-tuned beyond the first few digits, then we must still hope for NP lying close by at the few TeV scale.

- If we do not want to completely give up hope on the Higgs mass being fundamentally calculable and not fine-tuned beyond the first few digits, then we must still hope for NP lying close by at the few TeV scale.
- We cannot have TeV-scale NP without some kind of flavor protection. Given the current direct search bounds from the LHC, flavor universal NP no longer seems very natural with bounds O(10) TeV.

- If we do not want to completely give up hope on the Higgs mass being fundamentally calculable and not fine-tuned beyond the first few digits, then we must still hope for NP lying close by at the few TeV scale.
- We cannot have TeV-scale NP without some kind of flavor protection. Given the current direct search bounds from the LHC, flavor universal NP no longer seems very natural with bounds O(10) TeV.
- Instead, U(2) flavor symmetries are very well-motivated since 1) NP can couple more to the third and less to the light families and 2) we expect NP solving the hierarchy problem (and/or flavor puzzle) to be mostly coupled to the Higgs and 3rd family.

- If we do not want to completely give up hope on the Higgs mass being fundamentally calculable and not fine-tuned beyond the first few digits, then we must still hope for NP lying close by at the few TeV scale.
- We cannot have TeV-scale NP without some kind of flavor protection. Given the current direct search bounds from the LHC, flavor universal NP no longer seems very natural with bounds O(10) TeV.
- Instead, U(2) flavor symmetries are very well-motivated since 1) NP can couple more to the third and less to the light families and 2) we expect NP solving the hierarchy problem (and/or flavor puzzle) to be mostly coupled to the Higgs and 3rd family.
- We have shown that plenty of room currently remains for 3rd family new physics. But the most interesting NP also couples to the Higgs, making EWPT a powerful probe.
 Even without direct Higgs couplings, EWPTs unavoidably give strong bounds on a large class of operators via RG evolution.

- If we do not want to completely give up hope on the Higgs mass being fundamentally calculable and not fine-tuned beyond the first few digits, then we must still hope for NP lying close by at the few TeV scale.
- We cannot have TeV-scale NP without some kind of flavor protection. Given the current direct search bounds from the LHC, flavor universal NP no longer seems very natural with bounds O(10) TeV.
- Instead, U(2) flavor symmetries are very well-motivated since 1) NP can couple more to the third and less to the light families and 2) we expect NP solving the hierarchy problem (and/or flavor puzzle) to be mostly coupled to the Higgs and 3rd family.
- We have shown that plenty of room currently remains for 3rd family new physics. But the most interesting NP also couples to the Higgs, making EWPT a powerful probe.
 Even without direct Higgs couplings, EWPTs unavoidably give strong bounds on a large class of operators via RG evolution.
- Because EWPT are much more flavor democratic, not even third family NP can hide. A future tera-Z machine will (indirectly) probe quite generic NP in the 10-100 TeV range. In this sense, it seems clear that FCC-ee is the best way forward.

Thanks a lot for your attention!

- If we do not want to completely give up hope on the Higgs mass being fundamentally calculable and not fine-tuned beyond the first few digits, then we must still hope for NP lying close by at the few TeV scale.
- We cannot have TeV-scale NP without some kind of flavor protection. Given the current direct search bounds from the LHC, flavor universal NP no longer seems very natural with bounds O(10) TeV.
- Instead, U(2) flavor symmetries are very well-motivated since 1) NP can couple more to the third and less to the light families and 2) we expect NP solving the hierarchy problem (and/or flavor puzzle) to be mostly coupled to the Higgs and 3rd family.
- We have shown that plenty of room currently remains for 3rd family new physics. But the most interesting NP also couples to the Higgs, making EWPT a powerful probe.
 Even without direct Higgs couplings, EWPTs unavoidably give strong bounds on a large class of operators via RG evolution.
- Because EWPT are much more flavor democratic, not even third family NP can hide. A future tera-Z machine will (indirectly) probe quite generic NP in the 10-100 TeV range. In this sense, it seems clear that FCC-ee is the best way forward.

Backup Slides

• To address the EW hierarchy problem, there should be new states coupled to the Higgs and/or top, e.g. SUSY, composite Higgs, etc.

- To address the EW hierarchy problem, there should be new states coupled to the Higgs and/or top, e.g. SUSY, composite Higgs, etc.
- The same is true in models that aim to address the SM fermion mass hierarchies, e.g. new flavor non-universal EW gauge symmetries.

- To address the EW hierarchy problem, there should be new states coupled to the Higgs and/or top, e.g. SUSY, composite Higgs, etc.
- The same is true in models that aim to address the SM fermion mass hierarchies, e.g. new flavor non-universal EW gauge symmetries.
- These well-motivated classes of models generically lead to sizable corrections to EW precision observables (at least in third-family quarks).

- To address the EW hierarchy problem, there should be new states coupled to the Higgs and/or top, e.g. SUSY, composite Higgs, etc.
- The same is true in models that aim to address the SM fermion mass hierarchies, e.g. new flavor non-universal EW gauge symmetries.
- These well-motivated classes of models generically lead to sizable corrections to EW precision observables (at least in third-family quarks).

 $C_{Hq}^{(1)[33]}(H^{\dagger}D_{\mu}H)(\bar{q}_{L}^{3}\gamma^{\mu}q_{L}^{3})$ EWPT: $C_{Hq}^{(1)[33]} \lesssim (4 \text{ TeV})^{-2}$

- To address the EW hierarchy problem, there should be new states coupled to the Higgs and/or top, e.g. SUSY, composite Higgs, etc.
- The same is true in models that aim to address the SM fermion mass hierarchies, e.g. new flavor non-universal EW gauge symmetries.
- These well-motivated classes of models generically lead to sizable corrections to EW precision observables (at least in third-family quarks).

• These well-motivated classes of models generically lead to sizable corrections to EW precision observables (at least in the third-family).

Both operators are $U(2)^5$ preserving! Difficult for NP to hide once the Higgs is brought into the game!

EWPT are (still) a powerful probe of NP

The 'LEP paradox' Riccardo Barbieri Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy and INFN Alessandro Strumia Dipartimento di Fisica, Università di Pisa and INFN, Pisa, Italia Abstract Is there a Higgs? Where is it? Is supersymmetry there? Where is it? By discussing these questions, we call attention to the 'LEP paradox', which is how we see the naturalness problem of the Fermi scale after a decade of electroweak precision measurements, mostly

27 Nov 2000

done at LEP.

EWPT are (still) a powerful probe of NP

The 'LEP paradox'

Riccardo Barbieri

Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy and INFN

Alessandro Strumia

Dipartimento di Fisica, Università di Pisa and INFN, Pisa, Italia

Abstract

Is there a Higgs? Where is it? Is supersymmetry there? Where is it? By discussing these questions, we call attention to the 'LEP paradox', which is how we see the naturalness problem of the Fermi scale after a decade of electroweak precision measurements, mostly done at LEP.

5 Conclusion

27 Nov 2000

A straight interpretation of the results of the EWPT, mostly performed at LEP in the last decade, gives rise to an apparent paradox. The EWPT indicate both a light Higgs mass $m_h \approx (100 \div 200)$ GeV and a high cut-off, $\Lambda \gtrsim 5$ TeV, with the consequence of a top loop correction to m_h largely exceeding the preferred value of m_h itself. The well known naturalness problem of the Fermi scale has gained a pure 'low energy' aspect. At present, supersymmetry at the Fermi scale is the only way we know of to attach this problem.

EWPT are (still) a powerful probe of NP

The 'LEP paradox'

Riccardo Barbieri

Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy and INFN

Alessandro Strumia

Dipartimento di Fisica, Università di Pisa and INFN, Pisa, Italia

Abstract

Is there a Higgs? Where is it? Is supersymmetry there? Where is it? By discussing these questions, we call attention to the 'LEP paradox', which is how we see the naturalness problem of the Fermi scale after a decade of electroweak precision measurements, mostly done at LEP.

5 Conclusion

27 Nov 2000

A straight interpretation of the results of the EWPT, mostly performed at LEP in the last decade, gives rise to an apparent paradox. The EWPT indicate both a light Higgs mass $m_h \approx (100 \div 200)$ GeV and a high cut-off, $\Lambda \gtrsim 5$ TeV, with the consequence of a top loop correction to m_h largely exceeding the preferred value of m_h itself. The well known naturalness problem of the Fermi scale has gained a pure 'low energy' aspect. At present, supersymmetry at the Fermi scale is the only way we know of to attach this problem. This way of looking at the data may be too naive. As we said, in EWPT the SM with a light Higgs and a large cut-off can at least be faked by a fortuitous cancellation. In any case the point is not to replace direct searches for supersymmetry or for any other kind of new physics. Rather, we wonder if a better theoretical focus on the LEP paradox might be not without useful consequences. Its solution, we think, is bound to give us some surprise, in a way or another.

Collider Constraints on 4Q operators

Class	DoF	$t\bar{t}$	$t\bar{t}V$	t	tV	$t\bar{t}Q\bar{Q}$	$\begin{array}{c} h \ (\mu_i^f, \\ \text{Run-I}) \end{array}$	$\begin{array}{c} h \ (\mu_i^f, \\ \text{Run-II}) \end{array}$	h (STXS, Run-II)	VV
2-heavy- 2-light	$\begin{vmatrix} c_{Qq}^{1,8} \\ c_{Qq}^{Qq} \\ c_{Qq}^{3,8} \\ c_{Qq}^{3,8} \\ c_{Qq}^{3,1} \\ c_{Qq}^{3,8} \\ c_{Qq}^{3,1} \\ c_{tq}^{3,8} \\ c_{Qq}^{1,1} \\ c_{tq}^{8} \\ c_{tu}^{1} \\ c_{tu}^{8} \\ c_{Qu}^{1} \\ c_{td}^{8} \\ c_{Qd}^{1} \\ c_{Qd}^{1}$	$\left \begin{array}{c} \checkmark \\ (\checkmark) \\ (\land) \\ (\checkmark) \\ (\land) ($	$ \begin{vmatrix} \checkmark \\ (\checkmark) \\ (\land) \\ (\land)$	(√) ✓	(√) ✓		$\left \begin{array}{c} \checkmark \\ (\checkmark) \\ \\ (\land) \\ ($	$\begin{array}{c} \checkmark \\ (\checkmark) \\ (\land) \\ (\checkmark) \\ (\land) \\ (\land) \\ (\checkmark) \\ (\land) \\ ($	$\begin{pmatrix} \checkmark \\ (\checkmark) \\ \\ (\land) \\ (\land$	
4-heavy	$\begin{vmatrix} c_{QQ}^1 \\ c_{QQ}^8 \\ c_{Qt}^1 \\ c_{Qt}^8 \\ c_{Qt}^8 \\ c_{tt}^1 \end{vmatrix}$									
4-lepton	c_{ll}			✓	✓		✓	 ✓ 	 ✓ 	 ✓
2-fermion +bosonic	$\begin{array}{c} c_{t\varphi} \\ c_{tG} \\ c_{b\varphi} \\ c_{c\varphi} \\ c_{\tau\varphi} \\ c_{tW} \\ c_{tZ} \\ c_{\varphi Q} \\ c_{\varphi l_{i}} \\ c_{\varphi e} \\ c_{\varphi \mu} \\ c_{\varphi q} \\ c_$	✓ ✓	✓ ✓ (b) ✓ ✓ ✓ ✓	√ √ √		✓	√ √ √ √ √ (b) √ √ √ √ √ √ √ √ √ √ √ √ √	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	$\begin{array}{c} \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ (b) \end{array}$	

[Ethier, Magni, Maltoni, Mantani, Nocera, Rojo, Slade, Vryonidou, Zhang, <u>2105.00006</u>]

Hermitian bi-fermion operators

coeff.	$\Lambda_{ m flav.}^{ m down}$	$\Lambda^{ m up}_{ m flav.}$	$\Lambda_{ m EW}$	$\Lambda_{ m coll.}$	$\Lambda^{ m down}_{ m all}$	Obs.	$\Lambda^{ m up}_{ m all}$	Obs.
$\mathcal{C}_{H\ell}^{(1)[33]}$	0.1	0.1	4.4	1.6	4.3	$R_{ au}$	4.3	$R_{ au}$
$\mathcal{C}_{H\ell}^{(1)[ii]}$	0.7	0.7	7.6	3.	7.8	$\sigma_{ m had}$	7.8	$\sigma_{ m had}$
${\cal C}_{H\ell}^{(3)[33]}$	0.7	0.7	4.5	1.7	4.4	$R_{ au}$	4.4	$R_{ au}$
$\mathcal{C}_{H\ell}^{(3)[ii]}$	0.7	0.7	7.7	3.8	7.7	$\sigma_{ m had}$	7.7	$\sigma_{ m had}$
${\cal C}_{He}^{[33]}$	-	-	3.8	1.5	3.7	$R_{ au}$	3.7	$R_{ au}$
$\mathcal{C}_{He}^{[ii]}$	0.9	0.9	6.6	2.7	6.7	$\sigma_{ m had}$	6.7	$\sigma_{ m had}$
$\mathcal{C}_{Hq}^{(1)[33]}$	0.3	5.	3.7	0.1	3.7	Γ_Z	5.1	$B_s \to \mu\mu$
$\mathcal{C}_{Hq}^{(1)[ii]}$	0.5	5.2	1.9	0.5	2.	R_c	5.4	$B_s \to \mu \mu$
$\mathcal{C}_{Hq}^{(3)[33]}$	1.3	5.6	3.5	0.4	3.4	R_b	5.5	$B_s \rightarrow \mu \mu$
$\mathcal{C}_{Hq}^{(3)[ii]}$	1.3	5.3	5.6	3.1	5.7	$R_{ au}$	7.7	Γ_Z
${\cal C}_{Hd}^{[33]}$	-	-	1.3	0.2	1.3	R_b	1.3	R_b
$\mathcal{C}_{Hd}^{[ii]}$	_	_	1.7	0.3	1.7	$R_{ au}$	1.7	$R_{ au}$
${\cal C}_{Hu}^{[33]}$	0.6	0.6	3.	0.1	3.1	$A_b^{ m FB}$	3.1	$A_b^{ m FB}$
$\mathcal{C}_{Hu}^{[ii]}$	-	-	2.4	0.3	2.4	$R_{ au}$	2.4	$R_{ au}$

Table 2. Hermitian ψ^2 operators

Non-hermitian bi-fermion operators

coeff.	$\Lambda_{ m flav.}^{ m down}$	$\Lambda^{ m up}_{ m flav.}$	$\Lambda_{ m EW}$	$\Lambda_{ m coll.}$	$\Lambda^{ m down}_{ m all}$	Obs.	$\Lambda^{ m up}_{ m all}$	Obs.
$\mathcal{C}^{[33]}_{eH}$	-	-	5.1	-	5.1	$H\to\tau\tau$	5.1	$H\to\tau\tau$
$\mathcal{C}^{[33]}_{uH}$	-	-	0.2	-	0.2	$H\to\tau\tau$	0.2	$H \to \tau \tau$
$\mathcal{C}_{dH}^{[33]}$	-	-	3.7	-	3.7	$H \rightarrow bb$	3.7	$H \rightarrow bb$
$\mathcal{C}^{[33]}_{Hud}$	3.2	3.2	0.5	-	3.2	$B \to X_s \gamma$	3.2	$B \to X_s \gamma$
$\mathcal{C}^{[33]}_{eB}$	-	-	0.2	1.2	1.2	$pp \rightarrow \tau \tau$	1.2	$pp \to \tau\tau$
$\mathcal{C}^{[33]}_{uB}$	0.7	0.8	2.4	1.9	2.7	$A_b^{ m FB}$	2.7	$A_b^{ m FB}$
$\mathcal{C}_{dB}^{[33]}$	15.2	74.8	0.4	0.7	15.2	$B \to X_s \gamma$	74.8	$B \to X_s \gamma$
$\mathcal{C}^{[33]}_{eW}$	-	-	1.	1.9	1.8	pp ightarrow au u	1.8	pp ightarrow au u
$\mathcal{C}^{[33]}_{uW}$	0.5	0.9	2.3	3.6	3.7	QuarkDipoles	3.8	QuarkDipoles
$\mathcal{C}_{dW}^{[33]}$	15.7	53.	1.4	0.6	15.7	$B \to X_s \gamma$	53.	$B \to X_s \gamma$
$\mathcal{C}^{[33]}_{uG}$	0.1	0.3	0.5	2.7	2.7	QuarkDipoles	2.7	QuarkDipoles
$\mathcal{C}_{dG}^{[33]}$	4.	25.5	0.3	-	4.	$B \to X_s \gamma$	25.5	$B \to X_s \gamma$

Table 3. Non-hermitian ψ^2 operators

Scalar and Tensor operators

coeff.	$\Lambda_{ m flav.}^{ m down}$	$\Lambda^{ m up}_{ m flav.}$	$\Lambda_{ m EW}$	$\Lambda_{ m coll.}$	$\Lambda^{ m down}_{ m all}$	Obs.	$\Lambda^{ m up}_{ m all}$	Obs.
$\mathcal{C}^{[3333]}_{\ell edq}$	0.6	-	0.1	1.2	1.1	$pp \rightarrow \tau \tau$	1.2	$pp \to \tau\tau$
$\mathcal{C}_{quqd}^{(1)[3333]}$	1.8	5.5	1.7	0.4	2.2	$B \to X_s \gamma$	5.5	$B \to X_s \gamma$
$\mathcal{C}^{(8)[3333]}_{quqd}$	1.	5.1	0.7	0.2	1.	$B \to X_s \gamma$	5.1	$B \to X_s \gamma$
$\mathcal{C}_{\ell equ}^{(1)[3333]}$	-	-	2.1	-	2.1	$H\to\tau\tau$	2.1	$H\to\tau\tau$
$\mathcal{C}^{(3)[3333]}_{\ell equ}$	-	-	0.8	-	0.8	$H \to \tau \tau$	0.8	$H\to\tau\tau$

Table 4. Non-hermitian ψ^4 operators

LLLL vector operators

coeff.	$\Lambda_{ m flav.}^{ m down}$	$\Lambda^{\mathrm{up}}_{\mathrm{flav.}}$	$\Lambda_{ m EW}$	$\Lambda_{ m coll.}$	$\Lambda_{ m all}^{ m down}$	Obs.	$\Lambda^{ m up}_{ m all}$	Obs.
$\mathcal{C}_{\ell\ell}^{[3333]}$	-	-	0.3	0.2	0.3	$\sigma_{ m had}$	0.3	$\sigma_{ m had}$
$\mathcal{C}_{\ell\ell}^{[ii33]}$	-	-	0.8	3.4	3.3	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$	3.3	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$
$\mathcal{C}_{\ell\ell}^{[i33i]}$	-	-	3.3	3.3	4.2	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$	4.2	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$
$\mathcal{C}_{\ell\ell}^{[iijj]}$	-	-	0.9	4.4	4.4	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$	4.4	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$
$\mathcal{C}_{\ell\ell}^{[ijji]}$	-	-	4.5	4.4	4.9	$A_b^{ m FB}$	4.9	$A_b^{ m FB}$
$\mathcal{C}_{qq}^{(1)[3333]}$	1.	7.8	1.6	1.1	1.7	Γ_Z	7.6	$ C_{Bs} $
$\mathcal{C}_{qq}^{(1)[ii33]}$	1.3	11.2	0.9	1.5	1.7	FourQuarksTop	11.3	$ C_{Bs} $
$\mathcal{C}_{qq}^{(1)[i33i]}$	2.5	11.3	0.7	1.6	2.6	$B_s ightarrow \mu \mu$	11.3	$ C_{Bs} $
$\mathcal{C}_{qq}^{(1)[iijj]}$	0.9	8.1	0.4	-	0.9	$\operatorname{Im}(C_D)$	8.1	$ C_{Bs} $
$\mathcal{C}_{qq}^{(1)[ijji]}$	1.1	8.1	0.5	-	1.	$\operatorname{Im}(C_D)$	8.1	$ C_{Bs} $
$\mathcal{C}_{qq}^{(3)[3333]}$	1.	8.2	1.2	1.1	1.5	m_W	8.2	$ C_{Bs} $
$\mathcal{C}_{qq}^{(3)[ii33]}$	1.8	11.5	2.3	2.1	3.	R_b	11.3	$ C_{Bs} $
$\mathcal{C}_{qq}^{(3)[i33i]}$	2.6	11.2	0.9	2.4	3.1	$B_s ightarrow \mu \mu$	11.3	$ C_{Bs} $
$\mathcal{C}_{qq}^{(3)[iijj]}$	1.	7.9	1.5	0.2	1.5	$R_{ au}$	7.9	$ C_{Bs} $
$\mathcal{C}_{qq}^{(3)[ijji]}$	1.1	8.	0.9	0.1	1.2	$K^+ \to \pi^+ \nu \bar{\nu}$	8.	$ C_{Bs} $
$\mathcal{C}_{\ell q}^{(1)[3333]}$	0.1	1.7	1.4	1.	1.4	$R_{ au}$	1.6	$K^+ o \pi^+ \nu \bar{\nu}$
$\mathcal{C}_{\ell q}^{(1)[ii33]}$	0.4	5.	2.5	1.5	2.5	$\sigma_{ m had}$	5.1	$B_s o \mu \mu$
$\mathcal{C}_{\ell q}^{(1)[33ii]}$	-	1.6	0.3	3.4	3.4	$pp \to \tau\tau$	3.4	$pp \to \tau\tau$
$\mathcal{C}_{\ell q}^{(1)[iijj]}$	0.5	5.	0.5	5.4	5.4	$pp ightarrow \mu \mu$	5.6	$pp ightarrow \mu \mu$
$\mathcal{C}_{\ell q}^{(3)[3333]}$	0.7	1.5	1.4	1.	1.6	$R_{ au}$	1.6	$K^+ o \pi^+ \nu \bar{\nu}$
$\mathcal{C}_{\ell q}^{(3)[ii33]}$	0.7	5.1	2.4	1.5	2.5	$A_b^{ m FB}$	5.	$B_s o \mu \mu$
$\mathcal{C}_{\ell q}^{(3)[33ii]}$	0.1	1.4	2.	8.6	8.8	pp ightarrow au u	8.7	pp ightarrow au u
$\mathcal{C}_{\ell q}^{(3)[iijj]}$	0.5	5.1	2.1	22.5	22.5	$pp o \mu u$	23.7	$pp ightarrow \mu u$

Table 5. Four-fermion $(\bar{L}L)(\bar{L}L)$ terms

RRRR vector operators

coeff.	$\Lambda_{\mathrm{flav.}}^{\mathrm{down}}$	$\Lambda^{ m up}_{ m flav.}$	$\Lambda_{ m EW}$	$\Lambda_{ m coll.}$	$\Lambda_{ m all}^{ m down}$	Obs.	$\Lambda^{ m up}_{ m all}$	Obs.
$\mathcal{C}^{[3333]}_{ee}$	-	-	0.3	0.2	0.3	$R_{ au}$	0.3	$R_{ au}$
$\mathcal{C}^{[ii33]}_{ee}$	-	-	0.7	3.2	3.2	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$	3.2	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$
$\mathcal{C}_{ee}^{[iijj]}$	-	-	0.8	4.2	4.2	$(e^+e^- \to \mu^+\mu^-)_{\rm FB}$	4.2	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$
$\mathcal{C}^{[3333]}_{uu}$	0.4	0.4	1.2	0.8	1.3	$A_b^{ m FB}$	1.3	$A_b^{ m FB}$
$\mathcal{C}^{[ii33]}_{uu}$	0.1	0.1	1.1	1.3	1.4	FourQuarksTop	1.4	FourQuarksTop
$\mathcal{C}^{[i33i]}_{uu}$	-	-	0.5	1.3	1.4	FourQuarksTop	1.4	FourQuarksTop
$\mathcal{C}^{[iijj]}_{uu}$	-	-	0.3	-	0.3	$R_{ au}$	0.3	$R_{ au}$
$\mathcal{C}_{uu}^{[ijji]}$	-	-	0.3	-	0.3	$R_{ au}$	0.3	$R_{ au}$
$\mathcal{C}_{dd}^{[3333]}$	-	-	-	-	-	R_b	-	R_b
$\mathcal{C}_{dd}^{[ii33]}$	-	-	0.1	-	0.1	$R_{ au}$	0.1	$R_{ au}$
$\mathcal{C}_{dd}^{[i33i]}$	-	-	-	-	-	Γ_Z	-	Γ_Z
$\mathcal{C}_{dd}^{[iijj]}$	-	-	0.2	-	0.2	$R_{ au}$	0.2	$R_{ au}$
$\mathcal{C}_{dd}^{[ijji]}$	-	-	0.1	-	0.1	$R_{ au}$	0.1	$R_{ au}$
$\mathcal{C}^{[3333]}_{eu}$	-	-	1.2	0.4	1.2	$R_{ au}$	1.2	$R_{ au}$
$\mathcal{C}^{[ii33]}_{eu}$	0.9	0.9	2.1	0.7	2.2	$\sigma_{ m had}$	2.2	$\sigma_{ m had}$
$\mathcal{C}^{[33ii]}_{eu}$	-	-	0.3	2.8	2.8	$pp \to \tau\tau$	2.8	$pp \to \tau\tau$
$\mathcal{C}^{[iijj]}_{eu}$	-	-	0.6	7.4	7.4	$pp \to ee$	7.4	$pp \to ee$
$\mathcal{C}_{ed}^{[3333]}$	-	-	0.2	1.	1.	$pp \to \tau\tau$	1.	$pp \to \tau\tau$
$\mathcal{C}^{[ii33]}_{ed}$	-	-	0.3	1.5	1.5	$pp ightarrow \mu \mu$	1.5	$pp ightarrow \mu \mu$
$\mathcal{C}_{ed}^{[33ii]}$	-	-	0.2	2.8	2.8	$pp \to \tau\tau$	2.8	$pp \to \tau\tau$
$\mathcal{C}_{ed}^{[iijj]}$	-	-	0.4	4.4	4.4	$pp ightarrow \mu \mu$	4.4	$pp ightarrow \mu \mu$
$\mathcal{C}_{ud}^{(1)[3333]}$	0.1	0.1	0.4	0.3	0.4	R_b	0.4	R_b
$\mathcal{C}_{ud}^{(1)[ii33]}$	-	-	0.1	-	0.1	$R_{ au}$	0.1	$R_{ au}$
$\mathcal{C}_{ud}^{(1)[33ii]}$	-	-	0.5	1.2	1.2	FourQuarksTop	1.2	FourQuarksTop
$\mathcal{C}_{ud}^{(1)[iijj]}$	-	-	0.2	-	0.2	$R_{ au}$	0.2	$R_{ au}$
$\mathcal{C}^{(8)[3333]}_{ud}$	0.1	0.1	-	0.2	0.2	FourQuarksBottom	0.2	FourQuarksBottom
$\mathcal{C}_{ud}^{(8)[ii33]}$	-	-	-	-	-	-	-	-
$\mathcal{C}_{ud}^{(8)[33ii]}$	-	-	0.1	0.7	0.7	FourQuarksTop	0.7	FourQuarksTop
$\mathcal{C}_{ud}^{(8)[iijj]}$	-	-	-	-	-	-	-	-

Table 6. Four-fermion $(\bar{R}R)(\bar{R}R)$ terms

LLRR vector operators

_	coeff.	$\Lambda^{ m down}_{ m flav.}$	$\Lambda^{\mathrm{up}}_{\mathrm{flav.}}$	$\Lambda_{\rm EW}$	$\Lambda_{ m coll.}$	$\Lambda^{ m down}_{ m all}$	Obs.	$\Lambda^{\rm up}_{\rm all}$	Obs.
_	$\mathcal{C}^{[3333]}_{\ell e}$	-	-	0.2	0.1	0.2	$A_{ au}$	0.2	$A_{ au}$
	$\mathcal{C}_{\ell e}^{[ii33]}$	-	-	0.4	2.	1.9	$(e^+e^- \to \mu^+\mu^-)_{\rm FB}$	1.9	$(e^+e^- \to \mu^+\mu^-)_{\rm FB}$
	$\mathcal{C}_{\ell e}^{[33ii]}$	-	-	0.3	1.9	2.	$(e^+e^- \to \mu^+\mu^-)_{\rm FB}$	2.	$(e^+e^- ightarrow \mu^+\mu^-)_{ m FB}$
	$\mathcal{C}_{\ell e}^{[iijj]}$	-	-	0.5	3.8	3.8	$(e^+e^- \to \mu^+\mu^-)_{\rm FB}$	3.8	$(e^+e^- \to \mu^+\mu^-)_{\rm FB}$
_	$\mathcal{C}^{[3333]}_{\ell u}$	0.1	0.1	1.4	0.4	1.3	R_{τ}	1.3	R_{τ}
	$\mathcal{C}^{[ii33]}_{\ell u}$	0.7	0.7	2.4	0.8	2.3	$\sigma_{ m had}$	2.3	$\sigma_{ m had}$
	$\mathcal{C}^{[33ii]}_{\ell u}$	-	-	0.4	3.1	3.1	$pp \to \tau\tau$	3.1	$pp \rightarrow \tau \tau$
	$\mathcal{C}^{[iijj]}_{\ell u}$	-	-	0.7	5.2	5.2	$pp ightarrow \mu \mu$	5.2	$pp ightarrow \mu \mu$
_	$\mathcal{C}_{\ell d}^{[3333]}$	-	-	0.2	1.	1.	$pp \to \tau\tau$	1.	$pp \to \tau\tau$
	$\mathcal{C}_{\ell d}^{[ii33]}$	-	-	0.3	1.5	1.5	$pp \to \mu \mu$	1.5	$pp ightarrow \mu \mu$
	$\mathcal{C}_{\ell d}^{[33ii]}$	-	-	0.3	3.	3.	$pp \to \tau\tau$	3.	$pp \to \tau\tau$
	$\mathcal{C}_{\ell d}^{[iijj]}$	-	-	0.5	4.7	4.7	$pp \to \mu \mu$	4.7	$pp ightarrow \mu \mu$
_	$\mathcal{C}_{eq}^{[3333]}$	-	0.3	1.2	1.	1.3	R_{τ}	1.2	R_{τ}
	$\mathcal{C}_{eq}^{[ii33]}$	0.6	6.7	2.1	1.5	2.2	$\sigma_{ m had}$	6.7	$B_s ightarrow \mu \mu$
	$\mathcal{C}_{eq}^{[33ii]}$	-	0.3	0.2	3.7	3.7	$pp \to \tau\tau$	3.7	pp ightarrow au au
	$\mathcal{C}_{eq}^{[iijj]}$	-	-	0.4	6.	6.	$pp ightarrow \mu \mu$	6.	$pp ightarrow \mu \mu$
_	$C_{qu}^{(1)[3333]}$	0.3	1.8	1.2	0.6	1.3	Γ_Z	1.7	$B_s \rightarrow \mu \mu$
	$\mathcal{C}_{qu}^{(1)[ii33]}$	0.3	1.8	0.6	1.6	1.6	FourQuarksTop	2.1	$B_s ightarrow \mu \mu$
	$\mathcal{C}_{qu}^{(1)[33ii]}$	-	0.6	0.8	1.4	1.4	FourQuarksTop	1.2	FourQuarksTop
	$\mathcal{C}_{qu}^{(1)[iijj]}$	-	0.6	0.2	-	0.2	$R_{ au}$	0.6	$ C_{Bd} $
_	$\mathcal{C}_{qu}^{(8)[3333]}$	0.2	0.7	0.1	0.4	0.4	FourQuarksTop	0.7	$ C_{Bs} $
	$\mathcal{C}_{qu}^{(8)[ii33]}$	0.3	0.7	0.1	1.2	1.2	FourQuarksTop	1.2	FourQuarksTop
	$\mathcal{C}_{qu}^{(8)[33ii]}$	-	0.1	0.2	0.8	0.8	FourQuarksTop	0.8	FourQuarksTop
	$\mathcal{C}_{qu}^{(8)[iijj]}$	-	0.1	-	-	-	$R_{ au}$	0.1	$C_9^{ m U}$
_	$\mathcal{C}_{qd}^{(1)[3333]}$	0.2	0.3	0.4	0.3	0.3	R_b	0.3	R_b
	$\mathcal{C}_{qd}^{(1)[ii33]}$	-	0.3	0.1	-	-	$R_{ au}$	0.3	$B_s ightarrow \mu \mu$
	$\mathcal{C}_{qd}^{(1)[33ii]}$	-	0.4	0.6	1.3	1.2	FourQuarksTop	1.1	FourQuarksTop
	$\mathcal{C}_{qd}^{(1)[iijj]}$	-	0.4	0.2	-	0.2	$R_{ au}$	0.4	$B_s ightarrow \mu \mu$
_	$C_{qd}^{(8)[3333]}$	-	-	-	0.2	0.2	FourQuarksBottom	0.2	FourQuarksBottom
	$\mathcal{C}_{qd}^{(8)[ii33]}$	0.1	-	-	-	0.1	$B \to X_s \gamma$	-	$B \to X_s \gamma$
	$\mathcal{C}_{qd}^{(8)[33ii]}$	-	-	0.1	0.7	0.7	FourQuarksTop	0.7	FourQuarksTop
	$\mathcal{C}_{qd}^{(8)[iijj]}$	-	-	-	-	-	$R_{ au}$	-	$ C_{Bs} $

Table 7. Four-fermion $(\bar{L}L)(\bar{R}R)$ terms

Bosonic operators

coeff.	$\Lambda_{\mathrm{flav.}}^{\mathrm{down}}$	$\Lambda^{\mathrm{up}}_{\mathrm{flav.}}$	$\Lambda_{\rm EW}$	$\Lambda_{ m coll.}$	$\Lambda_{\mathrm{all}}^{\mathrm{down}}$	Obs.	$\Lambda^{\rm up}_{\rm all}$	Obs.
\mathcal{C}_H	-	-	-	-	-	-	-	-
$\mathcal{C}_{H\Box}$	0.2	0.2	0.6	0.1	0.6	$A_b^{ m FB}$	0.6	$A_b^{ m FB}$
\mathcal{C}_{HD}	0.5	0.5	5.1	-	5.	$A_b^{ m FB}$	5.	$A_b^{ m FB}$
\mathcal{C}_{HG}	0.8	0.8	0.4	-	0.9	$B \to X_s \gamma$	0.9	$B \to X_s \gamma$
\mathcal{C}_{HB}	0.5	0.5	0.9	-	0.9	$A_b^{ m FB}$	0.9	$A_b^{ m FB}$
\mathcal{C}_{HW}	0.7	0.7	0.9	-	1.	$A_b^{ m FB}$	1.	$A_b^{ m FB}$
\mathcal{C}_{HWB}	1.	1.	9.	-	9.	$A_b^{ m FB}$	9.	$A_b^{ m FB}$
\mathcal{C}_G	1.1	1.1	0.1	-	1.1	$B \to X_s \gamma$	1.1	$B \to X_s \gamma$
\mathcal{C}_W	0.3	0.3	0.9	-	0.9	$A_b^{ m FB}$	0.9	$A_b^{ m FB}$

Table 8. CP-conserving bosonic operators