

Bundesministerium für Bildung und Forschung

Workshop summary: Heavy flavour aspects in EFT - semileptonic decays -

Biljana Mitreska TU Dortmund

6th General Meeting of the LHC EFT working group 17.11.2023 1 Outline

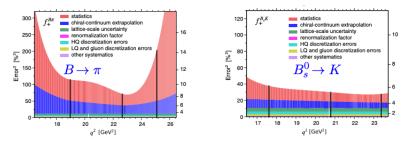
1 LHC EFT workshop: SL decays

- **2** $b \rightarrow u$ transitions
- **3** $b \rightarrow c$ transitions

1 LHC EFT WG Area 6: Heavy flavour aspects in EFT 12

- Dedicated meeting on Heavy flavour aspects in EFT in semileptonic decays on 24.04.2023 : Minico
- ► Theory and experimental(LHCb) contributions on $b \rightarrow u l v$ and $b \rightarrow c l v$ transitions
- Discussion on current/ongoing measurements and prospects

LHC EFT WG Area 6 meeting: Heavy flavour aspects in EFT ☐ Monday 24 Apr 2023, 1400 → 1800 EuroperZunch 9 (67:20:24 - BE Audionum Meyrin (CEN)) 1 Admir Greijo (Inventue Ben (Crij), Christoph Michael Langenbruch (Heideberg University (CR)), Gregory Max Clezarek (CEN)						
Videoconfere	nce CHC EFT WG Area 6 meeting: Heavy flavour aspects in EFT	🕨 Join 🗸 🗸				
14:00 → 14:30	V _{L0} determination at LHCb Speaker Michael De Cam (measure proventy (RC) (a) strated	© 30m				
14:40 → 15:10	$b \rightarrow u \ell \bar{\nu}_\ell$ in WEFT Speaker: Merl Reboul $\underline{\mathcal{R}}$ Reboult.24442.pdf	© 30m				
15:20 → 15:40	Coffee break	() 20m				
15:40 → 16:10	$b \rightarrow cf S_{f}$ at LHCb Speaker: Bigma Mitteska (relationshi Dormata Dormad (Ni) (2) (nc, BF 2022, Mr.	© 30m 🖉 💌				
16:20 → 16:50	b → c{ÿℓ distributions from theory Speaker: Dean Robinson (Lawrence Berkelay National Laboratory (LBL)) boutheorypdf	© 30m				

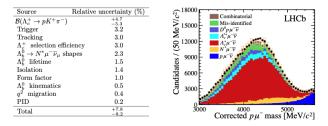

2 Outline

LHC EFT workshop: SL decays

- **2** $b \rightarrow u$ transitions
- **3** $b \rightarrow c$ transitions

2 $b \rightarrow u l v$

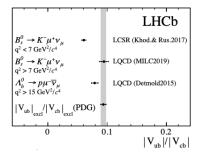
- V_{ub} measurements at LHCb: I talk by Michel de Cian
- Two main ways to measure $|V_{\mu\nu}|$
- ► **Exclusive**: using $B^+ \rightarrow \pi^+ \mu^- v_{\mu}$, possibly small signal yields
- ▶ Inclusive: $B^{0/+} \rightarrow X_{\mu}\mu^{+/-}\nu_{\mu}$, large background contamination
- ▶ Different form factor uncertainties in every $b \rightarrow u$ transition



2 V_{ub} from Λ_b^0 at LHCb

h

►
$$V_{ub}$$
 probed using $\Lambda_b^0 \rightarrow p\mu^- \bar{v_\mu} (q^2 > 15 GeV^2)$
 $|V_{ub}| = R_{FF} \frac{B(\Lambda_b^0 \rightarrow p\mu^- \bar{v_\mu})}{B(\Lambda_b^0 \rightarrow \Lambda_c^+ \mu^- \bar{v_\mu})} |V_{cb}|$


Exclusive |V_{cb}| world average used as input, R_{FF} from PRD 92(2015)034503]
 Main systematic uncertainties coming from the choice of normalisation channel

▶ Possibility of using non semileptonic decay ($\Lambda_b \rightarrow p\pi$), depending on external measurements on BFs

2 V_{ub} from B mesons

► Measure
$$\frac{V_{ub}}{V_{cb}}$$
 from $B_s^0 \to K^- \mu^+ \nu_\mu$ with $B_s^0 \to D_s^- \mu^+ \nu_\mu$ as normalisation

- Two values of V_{ub} measured depending on the FF predictions: for low q^2 (LCSR) and high q^2 (LQCD)
- Need to perform differential measurements to understand shape better
- ▶ Ongoing work on V_{ub} with $B^+ \rightarrow \rho^0 \mu^+ \nu$ and $B^+ \rightarrow D^0 \mu \nu$: same final state for signal and normalisation

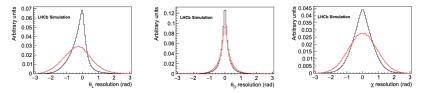
2 V_{ub} from B mesons

Determine consistency of exclusive data and quality of V_{ub} extraction:
 talk by Méril Reboud

Goodness of fit						
Data set	χ^2	d.o.f.	p value $[%]$	$ V_{ub} \times 10^3$		
$\bar{B} \to \pi \ell \nu$	27.83	31	62.98	$3.79_{-0.15}^{+0.15}$		
$\bar{B}\to \rho\ell\nu$	5.08	10	88.60	$2.63\substack{+0.25\\-0.22}$		
$\bar{B}\to \omega\ell\nu$	3.19	4	52.66	$2.74^{+0.33}_{-0.28}$		
all data	52.31	47	27.53	$3.50^{+0.13}_{-0.12}$		

- State-of-the-art determinations:
 - Inclusive [HFLAV, PDG, ... '22]
 |V_{ub}|= 4.13(12)(13)(18) 10⁻³
 - Exclusive [HFLAV, PDG, ... '20]
 |V_{ub}|= 3.70(10)(12) 10⁻³

- Tension present in the inclusive vs exclusive V_{ub} extraction
- Floating Wilson coefficients in the fit yields better b → uℓv fit (from Bayesian model comparison)
- Performing full angular analysis with floating New Physics operators will bring more insights
- Discussion between theory and experiment on how to exchange the non-gaussian likelihoods, observables and hadronic inputs from these measurements


3 Outline

LHC EFT workshop: SL decays

2 $b \rightarrow u$ transitions

3 $b \rightarrow c$ transitions

- 3 $b \rightarrow c \ell v$
 - Overview of differential measurements at LHCb talk by Biljana Mitreska
 - LHCb has an ongoing effort in angular analyses in each channels measuring: angular coefficients, CP observables, Wilson coefficients and form factor parameters (BGL, BLPR, CLN)

- Theory community welcomes the range of differential measurements at LHCb (particularly direct measurement of angular coefficients and Wilson coefficients)
- Need to find a common solution with theorists on publishing the data together with the results $(B \rightarrow D^* \mu(\tau) v)$

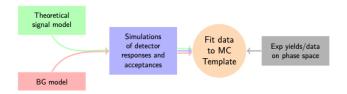
3 $b \rightarrow c \ell v$: comments on using BGL

SM fit with BGL

 Belle and BaBar 	Parameters	Stat. uncertainty LHCb Run I
measure 5 BGL	<i>a</i> 0	6.0e-05
parameters	a_1	5.0e-03
 Current LHCb 	a ₂	9.0e-02
analysis aims for 9	b_1	6.0e-04
BGL parameters	<i>b</i> ₂	1.5e-02
* PRD 100, 052007 (2019)	c_1	8.0e-05
 PRD 103, 079901 (2019) 	<i>c</i> ₂	1.2e-03
· CERN-THESIS-2022-105	d_0	1.4e-02
	d_1	2.5e-01

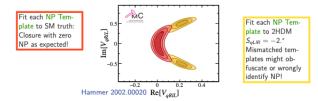
- Evaluate uncertainty due to series truncation in BGL
- Evaluate if the fitted coefficients saturate unitarity bounds
- When measuring New Physics contributions BGL is preffered over BLPR and CLN (model dependent)

3 $b \rightarrow c \ell v$: discussion on New Physics


• LFU interpretation in $b \rightarrow c \ell v$ • talk by Dean Robinson

$$\begin{split} H_{eff} &= \frac{4G_F}{\sqrt{2}} V_{cb} \sum_i C_i O_i \\ &= \frac{4G_F}{\sqrt{2}} V_{cb} [(1+C_{V_{LL}}) O_{C_{V_{LL}}} + C_{V_{RL}} O_{C_{V_{RL}}} \\ &+ C_{V_{LR}} O_{C_{V_{LR}}} + C_{V_{RR}} O_{C_{V_{RR}}} + C_{S_{LL}} O_{C_{S_{LL}}} \\ &+ C_{S_{RL}} O_{C_{S_{RL}}} + C_{S_{LR}} O_{C_{S_{LR}}} + C_{S_{RR}} O_{C_{S_{RR}}} \\ &+ C_{T_{LL}} O_{C_{T_{LL}}} + C_{T_{RR}} O_{C_{T_{RR}}}] + h.c., \end{split}$$

Standard analysis workflow


- 5 complex WCs to consider (assuming left-handed neutrino)
- Simplified models with a single heavy mediators

EW doublet (H_2)	S_L , S_R
W'	VL
Scalar/Vector LQ (<i>U</i> _{1,3} , <i>S</i> _{1,3} , <i>R</i> ₂ , <i>V</i> ₂)	V_L , S_R , $S_L \pm 4T$

3 $b \rightarrow c \ell v$: discussion on New Physics

Mismatch in WC subspace

- SM null test could be limited by possible NP biases
- Suggestion to 'redo' the measurements using NP templates to account the NP model
- Impractical to have 20 dimensional space of NP Wilson coefficients
- Quantify the fit templates biases with a fixed NP model
- To be discussed with theorists which is the optimal model to use

3 Summary

- Inclusive vs exclusive determination of V_{ub} and V_{cb} subject to constraints if New Physics is accounted in the fit
- Clear effect of the choice on the normalisation channel (in systematic uncertainties)
- When fitting for LFU observables estimate biases due to New Physics in the fit templates
- Need to decide on a common solution between theory and experiment on how to publish the data + results of the many analyses in b → clv transitions

Thank you!