Optimization of the High-Brightness Beam Performance of the CERN PSB with H^- **Injection**

Tirsi Prebibaj

In collaboration with: F. Antoniou, F. Asvesta, H. Bartosik, G. Franchetti

> BE Seminar 07/07/2023

Overview

Introduction

Part I: injecting beam from Linac4 Part II: maintaining beam properties in PSB Part III: pushing the limits of PSB

Conclusions

Overview

Introduction

Part I: injecting beam from Linac4 Part II: maintaining beam properties in PSB Part III: pushing the limits of PSB

Conclusions

LHC Injectors Upgrade (LIU) project

LHC produces particle collisions for high-energy experiments.

Injectors limitations

LIU upgrades essential: injectors operated in their **brightness limit**.

• Low energy accelerators (PSB, PS) mostly limited by space charge effects.

Space charge refers to the Coulomb interaction of charged particles.

• More particles/area \rightarrow stronger space charge.

Space charge reduces at higher energies \rightarrow **energy upgrades for PSB & PS** to double brightness for same space charge.

2

PSB upgrades

PSB: small, circular, p^+ accelerator with 4 identical rings.

PSB energy upgrade achieved by:

- Replacement of Linac2 (50 MeV) by **Linac4 (MeV)**.
- Magnets power supply and extraction upgrade (1.4 GeV to 2 GeV).

Linac4 accelerates H^- : new charge-exchange injection for PSB ($H^- \rightarrow p^+$).

First time **injection of Linac4** *H***[−] in entirely upgraded PSB:**

New effects to study, new challenges to overcome: **need of optimizations!**

Overview

Introduction

Part I: injecting beam from Linac4 Part II: maintaining beam properties in PSB Part III: pushing the limits of PSB

From PSB injection to extraction

Conclusions

[−] **injection**

Charge-exchange injection system:

- $H^- \rightarrow p^+$ by crossing thin foil.
- Local **magnets** put p^+ in orbit around PSB.
- Design of local **orbit bump** allows multi-turn injection: **more** and **denser** particles!
- Local bump dynamically decays to zero after injection.

First fundamental task: **preserving beam properties** (intensity and emittance) during H^- injection.

Beam properties

Statistical properties of incoming ensemble of particles

tirsi.prebibaj@cern.ch

Particles perform transverse oscillations (**betatron oscillations**) as they circulate accelerator.

Betatron oscillations

During betatron oscillations, number (**intensity**) and density (**emittance**) of particles is preserved.

Betatron tune: number of oscillations per turn (here $Q_y = 4.45$).

Injection perturbations

Injection bump induces fields errors → **perturbs machine properties**.

Perturbation increases oscillation amplitude→ **emittance growth** and **losses**.

During bump decay, perturbations **dynamically change**!

-beating

Oscillation amplitude $\propto \sqrt{\beta}$ β -function defined by machine optics

Method of measurement & correction

Method of measurement & correction

Devise method from **theoretical** understanding.

Modify PSB properties to dynamically compensate β -beating.

Simulation model to validate and test method.

Computationally reproduce realistic machine conditions.

Apply in accelerator and see **experimental** effects.

> Operational implementation.

Experimental results

Before correction and a settle and the settlement of the After correction

Fast and dynamic β -beating correction from $> 30\%$ to $< 3\%$.

Experimental results

Strength of perturbation strongly depends on **betatron tunes** Q_x , Q_y .

 β -beating correction restores intensity and emittance at high tunes.

Overview

Introduction

Part I: injecting beam from Linac4 Part II: maintaining beam properties in PSB Part III: pushing the limits of PSB

Conclusions

Beam evolution after injection

Field errors (like ones of injection) **common** in circular accelerators: perturb machine properties.

Injection effects take only 1% of PSB time (5/530 milliseconds)!

In "longer" beam storage, **space charge** effects become important!

Second fundamental task: **maintaining** beam properties throughout full PSB cycle.

Resonances

Magnetic field errors seen periodically by the beam turn-by-turn.

• If **betatron tune Q** close to excited resonance→ **resonant motion**.

Resonance condition: $mQ_x + nQ_y = p$ $m, n, p \in \mathbb{Z}$

Resonances plotted as lines in the tune diagram \rightarrow (Q_x, Q_y) needs to be **far from these lines**.

Resonances

Motion near resonance is perturbed and can become unstable.

Space charge

Space charge induces **non-linear force** that **defocuses** particles depending on their **transverse location** from the center.

Defocusing induces an **amplitude detuning**.

Space charge drives particles to resonances: **beam degradation**.

Beam degradation due to space charge

In bunched beams, the maximum tune spread depends on the local line density.

- **large** line density: **larger** tune spread
- **smaller** line density: **smaller** tune spread
- **near the tail** of the bunch, the tune spread is **very small**

Beam degradation due to space charge

Particles oscillate also in longitudinal plane (synchrotron oscillations).

Local line density of a particle changes \rightarrow **tune modulation**.

Tune modulation leads to **periodic resonance crossing**: particles drift outwards.

Beam degradation due to space charge

Low amplitude particles (beam core) interact with the resonance: **emittance growth**

High amplitude particles (beam tails) interact with the resonance: **losses**

Optimizations along PSB cycle

Optimizations along PSB cycle

Experimental results

Brightness increase **beyond LIU targets**!

Overview

Introduction

Part I: injecting beam from Linac4 Part II: maintaining beam properties in PSB Part III: pushing the limits of PSB

Conclusions

Pushing the limit of PSB

So far: PSB optimized for operation with **maximum brightness** performance.

Now: explore limits of PSB by injecting above half-integer resonance.

Needs **understanding** of half-integer resonance effects in combination with space charge.

Third fundamental task: **study space charge** effects near the halfinteger resonance.

Half-integer resonance

Why half-integer resonance:

- 1. Present in all circular accelerators
- 2. Strong and difficult to control
- 3. Bottleneck for most strong space charge machines (including PSB)

What was achieved in PSB:

1. Excellent **compensation**

using improved techniques

2. Controlled **excitation**

by deliberately degrading compensation

3. Experimental **measurement**

by characterizing unstable region

Non-linear phase space topologies

Non-linearities (like **space charge**) create more complicated phase space structures near resonances.

Experimental results

Adiabatic transition from linear to non-linear phase space.

Measurement of **trapping** in half-integer resonance due to space charge!

Experimental results

Controlling the phase space distribution by means of resonance excitation.

Characterization of space charge effects near half-integer resonance.

Benchmarking simulation models

Beam losses vs. space charge when crossing half-integer resonance.

Excellent **agreement** of measurements and tracking simulations.

Beam brightness

The understanding & minimization of unwanted half-integer effects lead to the:

Feasibility of half-integer crossing with beyond LIU brightness!

Overview

Introduction

Part I: injecting beam from Linac4 Part II: maintaining beam properties in PSB Part III: pushing the limits of PSB

Conclusions

Conclusions

PSB received upgrades within LIU to improve brightness performance.

Injection perturbations identified, measured and corrected and beam parameters optimized in PSB: **Contributed to beam brightness increase beyond LIU targets.**

Space charge effects near half-integer resonance characterized experimentally for the first time: **Improved understanding and modelling of beam dynamics.**

> Optimized high-brightness beam performance and explored accelerator's capabilities.

Booster ring

Thank you for your attention!

This work has been accomplished with the valuable contributions and assistance of:

S. Albright, F. Antoniou, F. Asvesta, H. Bartosik, C. Bracco, A. Calia, G. Franchetti, G.P. Di Giovanni, D. Gamba, S. Kostoglou, T. Levens, K. Li, E. H. Maclean, K. Paraschou, E. Renner, F. Roncarolo, G. Rumolo, P. Skowronski, G. Sterbini, PSB OP team

Supporting Material

References

[1]: T. Prebibaj et al., Injection Chicane Beta-Beating Correction for Enhancing the Brightness of the CERN PSB Beams, HB2021 [\(MOP18](https://indico.cern.ch/event/1079560/#2-hb2021-contributions)). [2]: T. Prebibaj et al., "Beta-beat correction in the PSB during injection bump decay", Presentation at ABP Injectors Working Group Meeting, CERN, Apr. 2020 [\[Online\]](https://indico.cern.ch/event/910642/contributions/3830849).

[3]: T. Prebibaj et al., "Status of the k-modulation application", Presentation at Injectors Performance Panel Meeting, CERN, Geneva, Switzerland, Nov. 2020 [[Online](https://indico.cern.ch/event/975301/contributions/4107125)].

[\[4\]](#page-42-0): K-Modulation Application, Accelerating Python Q4 2020 Meeting ([link](https://indico.cern.ch/event/974806/#7-what-we-learnt-from-developi)).

[5]: T.Prebibaj et.al., Studies on the Vertical Half-Integer Resonance in the CERN PS Booster, IPAC22, June 2022 (MOPOST058).

[6]: PSB Half-Integer experiment, Space Charge WG Meeting 16/12/2021 [\(link\)](https://indico.cern.ch/event/1104772/)

[7]: Effects of Space Charge close to the Half-Integer Resonance in the PSB, INC Section Meeting 01/02/2022 ([link](https://indico.cern.ch/event/1121715/)).

[8]: Latest Space Charge Meeting

[9]: G. Franchetti and I. Hofmann, "Particle Trapping by Nonlinear Resonances and Space Charge", in Nucl. Instr. and Meth. A 561, 2006, pp. 195-202.

[10]: T. Prebibaj et.al., Characterization of the Vertical Beam Tails in the CERN PS Booster, IPAC22, June 2022 (MOPOST057)

[11]: PSB profile observations: evolution along the cycle, Space Charge WG Meeting 22/04/2021 ([link](https://indico.cern.ch/event/1031578/#5-psb-profile-observations-evo)).

[12]: Wire scanner impact on the beam profile for the PSB, Space Charge WG Meeting 20/10/2021 [\(link\)](https://indico.cern.ch/event/1088187/).

Tomography in the transverse plane

Longitudinal motion

- **E** Realistic beams are not exactly monoenergetic: they have energy (momentum) spread ΔE (Δp).
- Different sets of longitudinal variables are used:

 $(z, \Delta E)$, $(\phi, \Delta E)$, $(\phi, \Delta p)$, ...

- Beams can be bunched or unbunched (coasting).
- Bunched beams perform synchrotron oscillations in the longitudinal phase space (energy-phase oscillations).

- Transverse motion can be coupled to the longitudinal motion:
	- Dispersion: orbit change with energy spread.
	- Chromaticity: tune change with energy spread.

Toy-model of 1-D resonance crossing

- \blacksquare 1-turn map + space charge kicks (amplitude detuning) + quadrupolar error (halfinteger excitation).
- Appearance of stable resonance islands.
- The size of the islands depends on the excitation amplitude and the detuning gradient [\[9](#page-42-0)].

Toy-model of 1-D resonance crossing

- \blacksquare 1-turn map + space charge kicks (amplitude detuning) + quadrupolar error (halfinteger excitation).
- Appearance of stable resonance islands.
- \blacksquare The size of the islands depends on the excitation amplitude and the detuning gradient [\[9](#page-42-0)].
- During the dynamic crossing of the resonance, the islands move towards larger amplitudes.

Stronger space charge

- When the space charge is very strong and/or the crossing is very slow, the beam seems to get unstable both in measurements and simulations (beam is fully lost)!
- The exact reasons for this are not yet fully understood, both for measurements and simulations.
- Currently running simulations with other codes (Xsuite, Micromap, ...).

Increasing complexity

Chromaticity induces adittional detuning.

Beam effects change when crossing the resonance with different speeds.

 10

Increasing complexity even more: operational conditions

Chromaticity cannot be corrected in both planes simultaneously.

PhD defense 2023 tirsi.prebibaj@cern.ch

Modelling beam tails

Used in the past to model non-Gaussian profiles in the LHC [\[6](#page-42-0)].

Profile measurement when beam is unstable

WS measurement **Simulating the WS in PyOrbit** Simulating the WS in PyOrbit

Effects of chromaticity

With non-zero chromaticity:

- More losses (the beam loss region increases).
- Beam not unstable for very strong space charge.

Modeling the Wire Scanner scattering

Modeling the Wire Scanner scattering

WS signal is proportional to the number of scattered particles \rightarrow measured distribution (green) is between the initial and the final distribution

- In the first few turns of the scan, the WS signal coincides with the initial distribution.
- As the scan progresses, the particles are being scattered: towards the last turns of the scan, the WS signal coincides with the final distribution \rightarrow asymmetric measured profile (WS Signal)

PhD defense 2023 tirsi.prebibaj@cern.ch

Shape of the particle distributions

Experimental study on interplay between space charge and resonances on shape of particle distributions.

Operational implementation

Applicability of the method with respect to the:

- available instrumentation of the PSB
- hardware and software infrastructure
- technical limitations

Ready

Half-integer resonance compensation and excitation

Resonance compensation:

- Experimentally, using orthogonal quadrupole correctors.
- Traditional techniques rely on crossing the resonance and monitoring the beam losses.
- Improved techniques were found that rely on the deformation of the shape of particle distribution (more sensitive!).

1.8 4.5 $\frac{5}{9}$ 1.6
 $\frac{1}{9}$ 1.4 σ ².4 4.3 1.2 500 600 700 800 300 400 -3.2 -3.0 -2.8 -2.6 Time (ms) **QNO816 [A]** $q = 1.20$ $q = 1.20$ $q = 1.80$ Amplitude [a.u. $q = 1.47$ Amplitude [a.u. -5 $\dot{0}$ $\overline{5}$ -5 $\dot{\mathbf{O}}$ -5 y position [mm] y position [mm]

Resonance controlled excitation:

In terms of deliberately degrading the compensation scheme.

Resonance width measurement:

• Finding methods to experimentally measure how large is the unstable region of the resonance.

Universal scalling diagrams

Systematic scans on the half-integer dynamic crossing:

- Transmission: fraction of particles that survive the crossing
- δQ_y^{SC} : maximum space charge tune spread
- $\delta Q/turn$: vertical tune change over one turn ("crossing speed").

