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1

LHC plans to increase collision rate. 

LHC requires brighter beams:
1) More particles (i.e. higher beam intensity)
2) Denser particles (i.e. smaller beam emittance)

Injectors could not satisfy LHC requirements → major 
upgrades within LIU project.

Upgrade machine Enhance incoming beams

LHC Injectors Upgrade (LIU) project
LHC produces particle collisions for high-energy experiments. 
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LIU project (2019-2021)

(not in scale)
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HL-LHC project (2026-2028)



Injectors limitations
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LIU upgrades essential: injectors operated in 
their brightness limit. 

• Low energy accelerators (PSB, PS) mostly limited by 
space charge effects. 

Space charge refers to the Coulomb 
interaction of charged particles. 

• More particles/area → stronger space charge.

Space charge reduces at higher energies → 
energy upgrades for PSB & PS to double 
brightness for same space charge.
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PSB upgrades
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PSB energy upgrade achieved by:
• Replacement of Linac2 (50 MeV) by Linac4 (𝟏𝟔𝟎 MeV).

• Magnets power supply and extraction upgrade (1.4 GeV to 𝟐 GeV).

Linac4 accelerates 𝐻−: new charge-exchange injection for PSB (𝐻− → 𝑝+). 

PSB: small, circular, 𝑝+ accelerator with 4 identical rings. 
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New effects to study, new challenges to overcome: need of optimizations!

First time injection of Linac4 𝑯− in entirely upgraded PSB: 
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𝑯− injection
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Charge-exchange injection system:

• 𝑯− → 𝑝+ by crossing thin foil.

• Local magnets put 𝑝+ in orbit around PSB.

• Design of local orbit bump allows multi-turn 
injection: more and denser particles!

• Local bump dynamically decays to zero after 
injection. 

First fundamental task: preserving beam properties (intensity and emittance) 
during 𝐻− injection. 
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Preserving beam properties
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Beam properties

Statistical properties of incoming 
ensemble of particles
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𝑵𝒃 (intensity)

𝝐𝒚 (emittance)

𝝈𝒚 (beam size)
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Preserving beam properties

5

Beam properties

Statistical properties of incoming 
ensemble of particles

Machine properties

Magnets configuration (known 
also as machine optics)
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Shape and 
orienatation of 
phase space lines
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Preserving beam properties

5

Beam properties

Statistical properties of incoming 
ensemble of particles

Machine properties

Magnets configuration (known 
also as machine optics)

tirsi.prebibaj@cern.ch

Matched
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Preserving beam properties

5

Beam properties

Statistical properties of incoming 
ensemble of particles

Machine properties

Magnets configuration (known 
also as machine optics)
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Matched

Particles perform transverse oscillations (betatron oscillations) as they circulate accelerator.
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Betatron oscillations
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During betatron oscillations, number (intensity) and density (emittance) of particles 
is preserved. 

1 2 3 4

Betatron tune: number of oscillations per turn (here 𝑸𝒚 = 𝟒. 𝟒𝟓). 
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Injection perturbations
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Injection bump induces fields errors → perturbs machine properties.

Mismatch

Perturbation increases oscillation amplitude→ emittance growth and losses. 
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During bump decay, perturbations dynamically change!

Larger oscillations
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𝜷-beating
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Oscillation amplitude ∝ 𝛽
𝛽-function defined by machine optics  

𝜷-beating =
𝜹𝜷

𝜷
× 𝟏𝟎𝟎 (%)
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Method of measurement & correction
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Devise method from 
theoretical

understanding.

Modify PSB properties to 
dynamically compensate 

𝛽-beating.

Identify local quadrupole corrector magnets

Local 𝛽-beating 
measurement with k-

modulation

Interpolation to 
pre-defined 

response matrix

Calculation of 
dynamic 𝛽-beating 

correction 
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Method of measurement & correction
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Devise method from 
theoretical

understanding.

Simulation model to 
validate and test method.

Apply in accelerator and 
see experimental effects.

Modify PSB properties to 
dynamically compensate 

𝛽-beating.

Computationally reproduce 
realistic machine 

conditions.

Operational 
implementation.
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Experimental results
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Before correction After correction

Fast and dynamic 𝛽-beating correction from > 𝟑𝟎% to < 𝟑%.  
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Experimental results
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Strength of perturbation strongly depends on betatron tunes 𝑄𝑥 , 𝑄𝑦.

𝜷-beating correction restores intensity and emittance at high tunes.
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Beam evolution after injection
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Injection effects take only 1% of PSB time (5/530milliseconds)!

Second fundamental task: maintaining beam properties throughout full PSB cycle. 

Field errors (like ones of injection) common in circular accelerators: perturb 
machine properties. 
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In “longer” beam storage, space charge effects become important!
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Resonances
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Magnetic field errors seen periodically by the beam turn-by-turn.
• If betatron tune Q close to excited resonance→ resonant motion. 

𝑄𝑥, 𝑄𝑦 : nr. 

of  oscillations 

in x and y
Resonance condition:

𝒎𝑸𝒙 + 𝒏𝑸𝒚 = 𝒑

𝒎,𝒏, 𝒑 ∈ ℤ

Resonances plotted as lines in the 

tune diagram → 𝑄𝑥 , 𝑄𝑦 needs to be 

far from these lines. 
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Resonances
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Motion near resonance is perturbed and can become unstable. 

Far from resonance:
stable

Near resonance:
perturbed

On resonance:
unstable
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Space charge
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Space charge induces non-linear force that defocuses particles depending on 
their transverse location from the center. 

Defocusing induces an 
amplitude detuning.

Space charge drives 
particles to resonances:

beam degradation.

Amplitude detuning in 1D Amplitude detuning in 2D
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Beam degradation due to space charge
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In bunched beams, the maximum tune spread depends on the local line density. 

• large line density: larger tune spread
• smaller line density: smaller tune spread
• near the tail of the bunch, the tune spread is very small
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Beam degradation due to space charge
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Particles oscillate also in longitudinal plane (synchrotron oscillations).

Local line density of a particle changes → tune modulation.

Tune modulation leads to periodic resonance crossing: particles drift outwards. 
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Beam degradation due to space charge
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Low amplitude particles (beam core) 
interact with the resonance: 

emittance growth

High amplitude particles (beam 
tails) interact with the 

resonance: losses
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Optimizations along PSB cycle

19

Correct injection 
perturbations

Minimize beam 
degradation due to space 

charge 

Dynamically correct 
induced 𝛽-beating.

Adjust tunes evolution

Correct resonances (similar 
mechanisms that control 𝛽-

beating)

tirsi.prebibaj@cern.ch

𝟐𝑸𝒚 = 𝟗

(losses)

𝟒𝑸𝒚 = 𝟏𝟔

𝟒𝑸𝒙 = 𝟏𝟔
(emittance 

growth)
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Optimizations along PSB cycle

19

Correct injection 
perturbations

Minimize beam 
degradation due to space 

charge 

Apply optimal settings to 
machine

Dynamically correct 
induced 𝛽-beating.

Adjust tunes evolution

Correct resonances (similar 
mechanisms that control 𝛽-

beating)

Impact on brightness 
performance.
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Experimental results
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Brightness increase beyond LIU targets!
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Pushing the limit of PSB
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So far: PSB optimized for operation with maximum brightness performance. 

Third fundamental task: study space charge effects near the half-
integer resonance.

Now: explore limits of PSB by injecting above half-integer resonance.

Needs understanding of half-integer 
resonance effects in combination with 

space charge. 
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𝟐𝑸𝒚 = 𝟗



Half-integer resonance

22tirsi.prebibaj@cern.ch

𝟐𝑸𝒚 = 𝟗

Why half-integer resonance:

1. Present in all circular accelerators
2. Strong and difficult to control
3. Bottleneck for most strong space charge machines 

(including PSB)

What was achieved in PSB:

1. Excellent compensation
using improved techniques

2. Controlled excitation
by deliberately degrading compensation

3. Experimental measurement
by characterizing unstable region
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Non-linear phase space topologies
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Non-linearities (like space charge) create more complicated phase space structures 
near resonances. 

Linear phase space Non-linear phase space
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Experimental results

24tirsi.prebibaj@cern.ch

Measurement of trapping in half-integer resonance due to space charge!

Adiabatic transition from linear to non-linear phase space.
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Experimental results
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Beam profile measurement
Phase space rotation

Rotation of resonance excitation

Characterization of space charge effects near half-integer resonance.

Controlling the phase space distribution by means of resonance excitation.
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Benchmarking simulation models
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Excellent agreement of measurements and tracking simulations.

Beam losses vs. space charge when crossing half-integer resonance.
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Beam brightness
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Feasibility of half-integer crossing with beyond LIU brightness!

The understanding & minimization of unwanted half-integer effects lead to the:
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Conclusions
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PSB received upgrades within LIU to improve brightness performance.

Optimized high-brightness beam performance and explored 
accelerator’s capabilities.

Space charge effects near half-integer resonance characterized experimentally for the first time:

Improved understanding and modelling of beam dynamics.

Injection perturbations identified, measured and corrected and beam parameters optimized in PSB:

Contributed to beam brightness increase beyond LIU targets.

BE Seminar 07/07/23



Thank you for your attention!

This work has been accomplished with the valuable contributions and assistance of:

S. Albright, F. Antoniou, F. Asvesta, H. Bartosik, C. Bracco, A. Calia, G. Franchetti, 
G.P. Di Giovanni, D. Gamba, S. Kostoglou, T. Levens, K. Li, E. H. Maclean, 

K. Paraschou, E. Renner, F. Roncarolo, G. Rumolo, P. Skowronski, G. Sterbini, PSB OP team



Supporting Material



References

43

[1]: T. Prebibaj et al., Injection Chicane Beta-Beating Correction for Enhancing the Brightness of the CERN PSB Beams, HB2021 (MOP18).
[2]: T. Prebibaj et al., “Beta-beat correction in the PSB during injection bump decay”, Presentation at ABP Injectors Working Group Meeting, 
CERN, Apr. 2020 [Online].
[3]: T. Prebibaj et al., “Status of the k-modulation application”, Presentation at Injectors Performance Panel Meeting, CERN, Geneva, 
Switzerland, Nov. 2020 [Online].

[4]: K-Modulation Application, Accelerating Python Q4 2020 Meeting (link).

[5]: T.Prebibaj et.al., Studies on the Vertical Half-Integer Resonance in the CERN PS Booster, IPAC22, June 2022 (MOPOST058).
[6]: PSB Half-Integer experiment, Space Charge WG Meeting 16/12/2021 (link)
[7]: Effects of Space Charge close to the Half-Integer Resonance in the PSB, INC Section Meeting 01/02/2022 (link).
[8]: Latest Space Charge Meeting

[9]: G. Franchetti and I. Hofmann, “Particle Trapping by Nonlinear Resonances and Space Charge”, in Nucl. Instr. and Meth. A 561, 2006, pp. 
195-202.

[10]: T. Prebibaj et.al., Characterization of the Vertical Beam Tails in the CERN PS Booster, IPAC22, June 2022 (MOPOST057)
[11]: PSB profile observations: evolution along the cycle, Space Charge WG Meeting 22/04/2021 (link).
[12]: Wire scanner impact on the beam profile for the PSB, Space Charge WG Meeting 20/10/2021 (link).

tirsi.prebibaj@cern.chPhD defense 2023

https://indico.cern.ch/event/1079560/#2-hb2021-contributions
https://indico.cern.ch/event/910642/contributions/3830849
https://indico.cern.ch/event/975301/contributions/4107125
https://indico.cern.ch/event/974806/#7-what-we-learnt-from-developi
https://indico.cern.ch/event/1104772/
https://indico.cern.ch/event/1121715/
https://indico.cern.ch/event/1031578/#5-psb-profile-observations-evo
https://indico.cern.ch/event/1088187/


Tomography in the transverse plane
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Longitudinal motion
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▪ Beams can be bunched or unbunched 
(coasting).

▪ Realistic beams are not exactly monoenergetic: they have energy (momentum) spread 𝚫𝐄 𝚫𝐩 . 

▪ Different sets of longitudinal variables are 
used:
𝑧, Δ𝐸 , 𝜙, Δ𝐸 , 𝜙, Δ𝑝 , …

▪ Bunched beams perform synchrotron 
oscillations in the longitudinal phase 
space (energy-phase oscillations). 

▪ Transverse motion can be coupled to the longitudinal motion:
• Dispersion: orbit change with energy spread.
• Chromaticity: tune change with energy spread.

BunchedCoasting
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Toy-model of 1-D resonance crossing
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▪ 1-turn map▪ 1-turn map + space charge 
kicks (amplitude detuning)

▪ 1-turn map + space charge 
kicks (amplitude detuning) + 
quadrupolar error (half-
integer excitation).

▪ Appearance of stable 
resonance islands.

▪ The size of the islands 
depends on the excitation 
amplitude and the detuning 
gradient [9].
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Toy-model of 1-D resonance crossing

47

▪ 1-turn map▪ 1-turn map + space charge 
kicks (amplitude detuning)

▪ 1-turn map + space charge 
kicks (amplitude detuning) + 
quadrupolar error (half-
integer excitation).

▪ Appearance of stable 
resonance islands.

▪ The size of the islands
depends on the excitation 
amplitude and the detuning 
gradient [9].

▪ During the dynamic crossing 
of the resonance, the islands 
move towards larger 
amplitudes.
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Stronger space charge
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▪ When the space charge is very strong and/or the crossing is very slow, the beam seems to get 
unstable both in measurements and simulations (beam is fully lost)!

▪ The exact reasons for this are not yet fully understood, both for measurements and simulations.

▪ Currently running simulations with other codes (Xsuite, Micromap, …).

PyOrbit 
simulation
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Increasing complexity
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Space charge

Chromaticity induces adittional detuning.

Appearance of multiple islands for different momentum offsets.Chromaticity Space charge + chroma

Beam effects change when 
crossing the resonance with 

different speeds.

adiabatic region non-adiabatic region

PhD defense 2023 tirsi.prebibaj@cern.ch



Increasing complexity even more: operational conditions
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Beam is accelerated: space charge constantly 
changes. Higher order resonances are also 

crossed. 

Half-integer is compensated but 
not perfectly (~3% losses).

Chromaticity cannot be 
corrected in both planes 

simultaneously.

Beam is 
bunched and 

goes from 
double 

harmonic to 
single 

harmonic.
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Modelling beam tails
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Generalized Gaussian function [5]:

𝒇𝒒𝑮 𝒙; 𝒒, 𝜷 =
𝜷

𝑪𝒒
𝒆𝒒 −𝜷𝒙𝟐

Used in the past to model non-Gaussian 
profiles in the LHC [6].
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Profile measurement when beam is unstable
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WS measurement Simulating the WS in PyOrbit
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Effects of chromaticity
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With non-zero chromaticity:
▪ More losses (the beam loss region increases).
▪ Beam not unstable for very strong space charge.
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Modeling the Wire Scanner scattering
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wire width (𝒅𝒘)

apply wire kick
𝚯𝑹𝑴𝑺

Apply the scattering kicks to the particles of the initial 
distribution that are within the wire width slice:

Track particles for one turn.

Displace the wire according to 𝑅. 

Final distribution: larger beam size because 
of the scattering.

Note that: simulation model independent of 
the beam intensity.

R
ep

ea
t
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Modeling the Wire Scanner scattering
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WS signal is proportional to the number of scattered particles → measured distribution (green) is between the 
initial and the final distribution 

Scan from “negative” to “positive” (left to right)

• In the first few turns of the scan, the WS signal coincides with the initial distribution.
• As the scan progresses, the particles are being scattered: towards the last turns of the scan, the WS signal 

coincides with the final distribution → asymmetric measured profile (WS Signal)
PhD defense 2023 tirsi.prebibaj@cern.ch



Shape of the particle distributions
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Modelling beam profiles’ 
shape with q-Gaussian 

function

𝑞 = 1
Gaussian 

shape
Desirable!

𝑞 = 1.6
Overpopulate

d tails
Undesirable!

Experimental study on interplay between space charge and resonances 
on shape of particle distributions.

Static tune scan



Operational implementation
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Applicability of the method with 
respect to the:

• available instrumentation of the 
PSB

• hardware and software 
infrastructure

• technical limitations



Half-integer resonance compensation and excitation
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Resonance compensation:
• Experimentally, using orthogonal quadrupole 

correctors.
• Traditional techniques rely on crossing the 

resonance and monitoring the beam losses.
• Improved techniques were found that rely on the 

deformation of the shape of particle distribution 
(more sensitive!).

Resonance controlled excitation:
• In terms of deliberately degrading the compensation 

scheme. 

Resonance width measurement:
• Finding methods to experimentally measure how 

large is the unstable region of the resonance.



Universal scalling diagrams
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Systematic scans on the half-integer dynamic 
crossing:

• Transmission: fraction of particles that survive 
the crossing

• 𝛿𝑄𝑦
𝑆𝐶 : maximum space charge tune spread

• 𝛿𝑄/𝑡𝑢𝑟𝑛: vertical tune change over one turn 
(“crossing speed”).


