Longitudinal Beam Diagnostics and Phase Space Reconstruction in the LHC Using ML

6th Inter-Experiment Machine Learning Workshop, 29Jan-2Feb 2024, CERN, Geneva, Switzerland

Konstantinos Iliakis¹, S. Albright¹, T. Argyropoulos², A. Lasheen¹, H. Timko¹, G. Trad² ¹SY-RF, ²BE-OP <u>konstantinos.iliakis@cern.ch</u>

Motivation

- Knowledge of **longitudinal beam parameters** (e. g. energy error, phase error, bunch length and intensity) is **essential for beam performance**
 - Even more so in the HL-LHC era
- Leveraging the high-resolution measurements of longitudinal bunch profiles:
 - Using fitting methods, bunch length, intensity, injection errors can be calculated
 - Using **longitudinal tomography**, bunch distribution and emittance can be calculated
- Above methods too time consuming for online use —limited to single bunch
- Develop ML model to:
 - Obtain the desired **beam parameters**,
 - and the 2D longitudinal beam distribution
 - **Fast** enough to allow for **online use** with **multi-bunch beams**

Training Data Generation

Original Model Architecture: Encoder- Decoder

Original Model Architecture: Limitations

Multi-output Regression: Bottlenecks

Restricted latent space: Sub-optimal

Solution: Ensemble of Encoders

- One model per beam parameter
- No bottlenecks
- More weights (total 60M)

Solution: Unsupervised latent space

- Waterfall to phase-space directly
- Better precision (~25%)
- Does not provide beam parameters
- More weights (151M)

Model Hyperparameter Optimization

- Huge Parameter Space
 - 8 Models
 - Convolution layers (number, filters, kernels, activation)
 - Dense layers (number, size, activation function)
 - Regularization (dropout, batch normalization)
 - Learning rate, epochs, batch size
 - Input cropping, etc...
- > 100^100 combinations \rightarrow Exhaustive search prohibitive
- 1000x difference between "good" and "ba
 - \rightarrow Tuning is essential
- Grid search optimisation:
 - Intelligent sampling
 - Early-stopping
 - Faster, near-optimal
 - Optuna library

Search algorithms on 2d space

Grid Search

Random Search

Adaptive Selection

Grid space search time comparison

2						
	Method	Total Configs	Total Run	Total Pruned	Best solution	Time taken
	Optuna	154	26	128	6.78E-06	1.5h
	Exhaustive	154	154	0	6.75E-06	6h
	1		0 P	TUN	IA	

Synthetic Data Evaluation: Ground truth available

Encoder Ensemble Evaluation

- Matches or surpasses precision of classical methods
- Not all parameters equally "interesting"
- Independent set of parameters
 - Easily modifiable

	95-percentile	
Phase Error	0.3 deg	
Energy Error	1.56 MeV	
LHC V_RF	0.05 MV	
Bunch Length	13.2 ps	
Intensity	1.2e9 p	
SPS V_RF	0.16 MV	
Distribution µ	0.14 a.u.	

Tomoscope Evaluation

- MAE: 0.001 (1‰)
- Visually indistinguishable

Evaluation on Measurements: Reality Gap

• Ground truth not fully available

- Some measurements, fitting or alternative methods
- Multi-bunch measurements, single-bunch simulations

Evaluation on Real Data: End-to-End

- Visually indistinguishable
 - Pixel-to-pixel, MAE: 0.03
- Full reconstruction (48 bunches, 300 turns)

Model Deployment

Machine Learning Platform (MLP):

- Standardizes the storage, versioning and distribution of ML models.
- Exposes uniform API (load, save, fit, predict)
- Model updates transparent to downstream
- + Standalone deployment: Inference in remote server, no local installation.
- Available at: acc-py-repo.cern.ch/browse/project/mlp-

Storage for off-line processing

GUI Application

Target: Minimal user interaction

- Reads input from UCAP node
- Updates with every new injection

Capabilities:

- Subscribe to UCAP
- Inspect Bunch Profiles
- Bunch-by-bunch beam diagnostics
- Longitudinal tomography
- Edit settings, save to file

Extensions:

- Unify with classical tomography
- Allow for direct comparison

Conclusions

• ML a powerful and promising solution to both:

- Extraction of essential beam parameters in real-time
- Multi-bunch tomography in real-time
- Less than 1 min for 300 turns phasespace reconstruction of 48 bunches

• Tool is in operational state

- \circ $\,$ To be tested on next run
- GUI for real time display
- Output data stored post-processing

Thank you for your attention!

Future Work

- Hybrid, Tracking+ML approach
 - Predict initial bunch distribution, then track with BLonD
- Domain Adaptations/ Adjustments:
 - Multi-bunch beams
 - lons
 - Phases of the acceleration
 - Machines (PS, SPS)
- Transfer learning
 - Re-use core model architecture
 - Combine with smaller, simpler model per task

