

YonedaVAE: Self-Supervised Out-of-Distribution Multi-Set Generation for Amortized Simulation and Inverse Problems

Baran Hashemi

Ludwig-Maximilians-Universität München

Currently at The ORIGINS Cluster Munich (TUM)

Motivation

From HEP side:

To do a full detector simulation with irregular geometry and ultra-high granularity?

To Generate detector signatures for kinematic/luminosity regions where data is very rare?

Motivation

From HEP side:

To do a full detector simulation with irregular geometry and ultra-high granularity?

To Generate detector signatures for kinematic/luminosity regions where data is very rare?

From ML side:

To Reach "Context Extrapolation" in Inverse design problems?

Enhance the VAE prior with **Self-Supervised Learning**?

Experiment

The Pixel Vertex Detector (PXD): sub-detector for charged tracks at Belle II.

+7.5M channels, [40,250,768], per event --> "Ultra-High Granularity"

Having a **Toroid** topology:

The inner layer: 16 sensors, The outer layer: 24 sensors

(only 19 sensors were installed)

PXD Generation: YonedaVAE

Problem description:

A. Training:

PXD Generation: YonedaVAE

Problem description:

PXD Generation: YonedaVAE

Problem description:

A. Training:

- $\mathcal{D}_{train} = \{ (\mathbf{X}^{(m)}; \mathbf{e}^{(m)}; \mathbf{c}^{(m)}) \}_{m=1}^{19}$ X: Set of hits, $|\mathbf{X}^{(m)}| = \mathbf{N}^{(m)}$ \mathbf{e} : Event-level attribute
 - c : Sensor-level condition

$$\mathcal{D}_{test} = \{\mathbf{e}^{(m)}\}_{m=1}^{19}$$

e : Event-level attribute

s.† $N_{max}^{test} \gg N_{max}^{train}$

- An event ١. ۱ I L I. 19, $N^{(m)}$, ch I. 00 LayerNorm MLP 17 Event
- 1. Encoder: EventFormer -> Yoneda Pooling

1. Encoder: EventFormer -> Yoneda Pooling

2. Set Generator:

Question:

How to learn a better prior to help the model generalize better to unseen data at test time?

2. Set Generator: Learning prior à la Self-Supervised Learning

2. Set Generator: Learning prior à la Self-Supervised Learning

2. Set Generator:

Now we learned a prior and predicted sample-level cardinality

Question:

How should we populate the points point cloud for an irregular setup?

YonedaVAE: Decoder

3. Decoder: Modified EventFormer

NN-based Metrics

FID/KID backbone trained on the complete dataset

The Lower the FID/KID, the better sample quality

	$ $ TSPN $(i.i.d)^1$	TSPN $(Top-k)^2$	$IEA-GAN^3$	$Set-VAE^4$	YonedaVAE	Test Data
FID	$ig 49.46 \pm 0.29$	41.40 ± 0.48	37.84 ± 0.98	33.49 ± 0.11	20.19 ± 0.31	0
$\mathbf{KID}^{(\times 10^{-4})}$	339 ± 7	312 ± 1	283 ± 8	181 ± 2	${\bf 130\pm 2}$	0
						()

1: 2006.16841, Kosiorek et al. 2: 2110.02096 Vignac et al. 4: 2303.08046 Hashemi et al. 5. 2103.15619 Kim et al.

Train/Val Set (ID data), Lum 1.42×10^{34} cm⁻²s⁻¹

Correlation between the number of hits between 19 sensors of PXD

Test (OOD data), Lum. 2.68×10^{34} cm⁻²s⁻¹

Correlation between the number of hits between 19 sensors of PXD

Test (OOD data), Lum. 2.68×10^{34} cm⁻²s⁻¹

 $\sigma_{\text{YonedaVAE}}(\Delta d_0) = 0.1674 \pm 0.0011$ $\sigma_{\text{Real}}(\Delta d_0) = 0.1643 \pm 0.0012$ **Real vs YonedaVAE**:

KS Statistic Δd_0 : 0.0058, p-value: 0.4910

 $\sigma_{\text{YonedaVAE}}(\Delta z_0) = 5.9990 \pm 0.0409$ $\sigma_{\text{Real}}(\Delta z_0) = 5.8735 \pm 0.0399$ **Real vs YonedaVAE**:

KS Statistic Δz_0 : 0.0040, p-value: 0.8993

Summary and Outlook

From HEP side:

Simulate a full detector, with irregular geometry and ultra-high granularity

Generate detector signatures for luminosity regions well beyond the training data

From ML side:

V To Reach "**Context Extrapolation**" in Inverse design problems?

Introduce a learnable VAE prior with Self-Supervised Learning and Transformer?

U What needs to be done: More in depth uncertainty quantification.

Stay Tuned for the full results!

Backup Slides

1. Encoder: EventFormer --> Yoneda Pooling

YonedaVAE: Ablation

1.0

1.0

1. Marginal Distributions:

YonedaVAE: Ablation

1. Marginal Distributions:

 $\sigma_{\text{YonedaVAE}}(\Delta \omega) = 0.0066 \pm 0.0001$ $\sigma_{\text{Real}}(\Delta \omega) = 0.0065 \pm 0.0001$ **Real vs YonedaVAE**:

KS Statistic $\Delta \omega$: 0.0052, p-value: 0.6296

 $\sigma_{\text{YonedaVAE}}(\Delta \tan \lambda) = 0.0753 \pm 0.0005$ $\sigma_{\text{Real}}(\Delta \tan \lambda) = 0.0726 \pm 0.0004$

Real vs YonedaVAE:

KS Statistic $\Delta \tan \lambda : 0.0044$, p-value: 0.8238

Validation of generated PXD images

Validation Metrics over the test set:

☑FID and KID:

The use of activations of the last layer from the Inception-V3 model trained on the PXD images to summarise each image, gives the score. The lower the FID/KID the better the image diversity and Fidelity.

					1 - Carter and a second
	WGAN-gp	BigGAN-deep	ContraGAN	PE-GAN	IEA-GAN
FID	12.09	4.40 ± 0.88	3.14 ± 0.74	2.61 ± 0.91	1.50 ± 0.16
KID	0.0096	0.0031 ± 0.0001	0.0015 ± 0.0002	0.0021 ± 0.0004	0.0010 ± 0.0002

Possible interpretation of FID at the pixel level:

Image Jitterings	FID
None	0
Random Masking (dead zones)	14.58
Random Noise	87.23
Random Rotation (30 degrees)	23.69
Random Rotation (10 degrees)	2.81
Random Translation $(0.1, 0.1)$	1.99
Random Shear $(10, 10)$	23.53
Random Zoom	9.06
High Intensity smearing	3.16
Low Intensity smearing	47.24

Correlation vs No Correlation

How important are these correlations?

- For high momentum regime $p_T > 0.4 \ GeV$
- Shuffling the events \rightarrow losing the correlation

Parameter	Unbiased Re	KS statistic	p-value	
	Shuffled Geant4	Unshuffled Geant4		
d_0	0.1343 ± 0.0007	0.0732 ± 0.0004	0.0067	0.7655
ϕ_0	0.2158 ± 0.0011	0.1859 ± 0.0009	0.0066	0.7899
z_0	5.0076 ± 0.0253	4.9341 ± 0.0249	0.0152	0.0211
ω	0.0010 ± 0.0000	0.0008 ± 0.0000	0.0138	0.0485
$ an\lambda$	0.0388 ± 0.0002	0.0382 ± 0.0002	0.0167	0.0086

Overlay Problem

Realistic detector simulation has to take into account effects from background processes

- Simulation requires many PXD hitmaps with statistically independent background.
- Soverlay hits from simulated background or random trigger data to hits from signal MC.
- PXD hits have the highest storage consumption.
- Requires distributing over all sites where MC is produced.

Solution: Generating the background data on the way of analysis with GANs instead of storing them.

