Uncertainty-aware Machine Learning for Proton Therapy Range Verification with a Digital Tracking Calorimeter

Alexander Schilling^{1,2} on behalf of the Bergen pCT Collaboration

¹University of Applied Sciences Worms ²University of Kaiserslautern-Landau (RPTU)

Background

Pencil beam scanning proton therapy

- Cancer treatment with small proton beams ($\sigma = 3-7$ mm)
- Bragg peak at the end of proton range \rightarrow highest damage to tissue
- Target different positions with different energies to cover tumor with Bragg peaks

Range verification

Particle therapy comes with inherent uncertainties (Fig. 1)

Range Estimator Evaluation

Model	MAE_R	MAE_Z	$RMSE_R$	$RMSE_Z$
Single task	0.822 ± 0.023	1.254 ± 0.021	1.082 ± 0.029	1.745 ± 0.025
Weighted sum	0.763 ± 0.013	1.087 ± 0.020	0.990 ± 0.015	1.526 ± 0.030
Homoscedastic	0.782 ± 0.009	1.107 ± 0.015	1.020 ± 0.011	1.559 ± 0.023

Table 1. MAE and RMSE scores ± 1 standard deviation in mm for different learning scenarios and targets

What does the prediction of a single spot mean for the treatment fraction?

Spot Rejection Rate rr

Consider all spots of a treatment fraction Z

- Reject spots outside the 95% confidence interval using predictive uncertainty
- Rate of rejected spots *rr* measures treatment quality

7 0 3

Figure 1. Sources of uncertainty (1.5 σ , in mm) for a proton beam of 20 cm range in water [2]

Range verification: verify planned spot matches real spot in patient • Goal: prediction error $\leq 1 \text{ mm}$

Figure 2. Simulated proton treatment setup with digital tracking calorimeter distal to the patient

Pediatric head phantom: 715-HN by CIRS Inc., digitized by Giacometti et al. [3]

- 10 mm spot spacing, 30° phantom rotation interval
- Clinically relevant beam energies (from matRad [4])
 - 60.13 MeV (31 mm range) 150.35 MeV (157 mm range)
- \rightarrow 36258 pencil beam spots across phantom

Digital tracking calorimeter (DTC): designed by the Bergen pCT Collaboration [5]

Properties

• Correct treatment: rr = 0.05Higher rr means lower treatment quality

Spot Rejection Rate Evaluation

Evaluation scenario

- Introducing lateral shift of patient as error
- Compute rr for increasing error, up to 10 mm

- 43 detector layers
- 108 ALPIDE silicon pixel detectors per layer

Feature Generation

Detector features: From detected point cloud data

- Number of hits/pixels
- Mean and σ of cluster size
- Number of hits/pixels in layer 0, 1, 2, ..., 42
- Curve fits over layer-wise data
- ...

Phantom features: From RSP image of patient

- 200 × 1 mm slices of Gaussian-weighted sum of RSP values of the patient along the beam axis
- Sum of values

617 features for each simulated pencil beam spot

3 fully-connected hidden layers (1024, 512, 128 units)

• 5% dropout [6] after each hidden layer

1024 units, sigmoid, 5% dropout

500

400

Figure 3. Example output for a treatment spot

z (mm), beam direction \rightarrow

300

200

>

-80

150 🗡

-150

(mm)

Figure 5. Spot rejection rates with increasing amount of error in the form of a lateral shift of the patient

Statistical Significance

Figure 6. Average p-values for t-tests sampled 10000 times for different spot counts with 1, 2, and 3 mm lateral shift

Conclusion

• The DTC can be used for range verification in proton therapy

• An uncertainty-aware neural network can be used for range verification with MAE $\approx 1 \text{ mm}$

How many spots need to be evaluated before rr becomes statistically significant?

Multitask learning: water range R and Bragg peak depth Z

Uncertainty

 $\sigma_{total}^2 = \sigma_{model}^2 + \sigma_{data}^2$

• Monte Carlo dropout [7] for epistemic uncertainty σ^2_{model} • Predicting aleatoric uncertainty σ_{data}^2 for each target [8]

P

Uncertainty calibration with isotonic regression [9]

512 units, sigmoid, 5% dropout 128 units, sigmoid, 5% dropout σ_R^2 σ_Z^2 μ_Z μ_R

Figure 4. Neural network architecture

• rr is a well-defined quality metric given any range estimator with calibrated uncertainty

References

[1] Alexander Schilling et al. Uncertainty-aware spot rejection rate as quality metric for proton therapy using a digital tracking calorimeter. PMB, 68(19), 2023. doi: 10/k29s. [2] Harald Paganetti. Range uncertainties in proton therapy and the role of monte carlo simulations. PMB, 57(11), 2012. doi: 10/gj3vf3. [3] V Giacometti et al. Development of a high resolution voxelised head phantom for medical physics applications. Physica Medica, 33, 2017. doi: 10/f9wbs5. [4] H-P Wieser et al. Development of the open-source dose calculation and optimization toolkit matrad. Medical Physics, 44(6), 2017. doi: 10/gjmvmg. [5] J Alme et al. A high-granularity digital tracking calorimeter optimized for proton CT. Front. Phys., 8, 2020. doi: 10/k37b. [6] N Srivastava et al. Dropout: a simple way to prevent neural networks from overfitting. JMLR, 15(1), 2014. [7] Y Gal et al. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In ICML, 2016. [8] A Kendall et al. What uncertainties do we need in bayesian deep learning for computer vision? In *NeurIPS*, volume 30, 2017. [9] V Kuleshov et al. Accurate uncertainties for deep learning using calibrated regression. In *ICML*, 2018.

https://sivert.info

6th Inter-experiment Machine Learning Workshop — 29.01.2024 – 02.02.2024

aschilling@hs-worms.de