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Background

Pencil beam scanning proton therapy

Cancer treatment with small proton beams (σ = 3–7mm)

Bragg peak at the end of proton range → highest damage to tissue

Target different positions with different energies to cover tumor with Bragg peaks

Range verification

Particle therapy comes with inherent uncertainties (Fig. 1)
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Figure 1. Sources of uncertainty (1.5σ, in mm) for a proton beam of 20 cm range in water [2]

Range verification: verify planned spot matches real spot in patient

Goal: prediction error ≤ 1mm
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Figure 2. Simulated proton treatment setup with digital tracking calorimeter distal to the patient

Pediatric head phantom: 715-HN by CIRS Inc., digitized by Giacometti et al. [3]

10mm spot spacing, 30° phantom rotation interval

Clinically relevant beam energies (from matRad [4])
60.13MeV (31mm range) — 150.35MeV (157mm range)

→ 36258 pencil beam spots across phantom

Digital tracking calorimeter (DTC): designed by the Bergen pCT Collaboration [5]

43 detector layers

108 ALPIDE silicon pixel detectors per layer

Feature Generation

Detector features: From detected point cloud data

Number of hits/pixels

Mean and σ of cluster size

Number of hits/pixels in layer 0, 1, 2, …, 42

Curve fits over layer-wise data

…

Phantom features: From RSP image of patient

200 × 1mm slices of Gaussian-weighted sum of RSP

values of the patient along the beam axis

Sum of values

617 features for each simulated pencil beam spot
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Figure 3. Example output for a treatment spot

Neural Network Architecture

Network architecture

3 fully-connected hidden layers (1024, 512, 128 units)

5% dropout [6] after each hidden layer

Multitask learning: water range R and Bragg peak depth Z

Uncertainty

σ2
total = σ2

model + σ2
data

Monte Carlo dropout [7] for epistemic uncertainty σ2
model

Predicting aleatoric uncertainty σ2
data for each target [8]

Uncertainty calibration with isotonic regression [9]

617 input features

1024 units, sigmoid, 5% dropout

512 units, sigmoid, 5% dropout

128 units, sigmoid, 5% dropout
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Figure 4. Neural network architecture

Range Estimator Evaluation

Model MAER MAEZ RMSER RMSEZ

Single task 0.822 ± 0.023 1.254 ± 0.021 1.082 ± 0.029 1.745 ± 0.025
Weighted sum 0.763 ± 0.013 1.087 ± 0.020 0.990 ± 0.015 1.526 ± 0.030
Homoscedastic 0.782 ± 0.009 1.107 ± 0.015 1.020 ± 0.011 1.559 ± 0.023

Table 1. MAE and RMSE scores ±1 standard deviation in mm for different learning scenarios and targets

What does the prediction of a single spot mean for the treatment fraction?

Spot Rejection Rate rr

Consider all spots of a treatment fraction Z
Reject spots outside the 95% confidence interval using predictive uncertainty

Rate of rejected spots rr measures treatment quality

rr = |{ zt ∈ Z | 1.96σ < |zt − f (xt)| }|
|Z|

Properties

Correct treatment: rr = 0.05
Higher rr means lower treatment quality

Spot Rejection Rate Evaluation

Evaluation scenario

Introducing lateral shift of patient as error

Compute rr for increasing error, up to 10mm
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(a) Uncalibrated uncertainty
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(b) Calibrated uncertainty

Figure 5. Spot rejection rates with increasing amount of error in the form of a lateral shift of the patient

Statistical Significance

How many spots need to be evaluated before rr becomes statistically significant?
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(a) Weighted sum of losses
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(b) Homoscedastic uncertainty-weighted losses

Figure 6. Average p-values for t-tests sampled 10000 times for different spot counts with 1, 2, and 3 mm lateral shift

Conclusion

The DTC can be used for range verification in proton therapy

An uncertainty-aware neural network can be used for range verification with MAE ≈ 1mm
rr is a well-defined quality metric given any range estimator with calibrated uncertainty

References

[1] Alexander Schilling et al. Uncertainty-aware spot rejection rate as quality metric for proton therapy using a digital tracking calorimeter. PMB, 68(19), 2023. doi: 10/k29s.
[2] Harald Paganetti. Range uncertainties in proton therapy and the role of monte carlo simulations. PMB, 57(11), 2012. doi: 10/gj3vf3.
[3] V Giacometti et al. Development of a high resolution voxelised head phantom for medical physics applications. Physica Medica, 33, 2017. doi: 10/f9wbs5.
[4] H-PWieser et al. Development of the open-source dose calculation and optimization toolkit matrad. Medical Physics, 44(6), 2017. doi: 10/gjmvmg.
[5] J Alme et al. A high-granularity digital tracking calorimeter optimized for proton CT. Front. Phys., 8, 2020. doi: 10/k37b.
[6] N Srivastava et al. Dropout: a simple way to prevent neural networks from overfitting. JMLR, 15(1), 2014.

[7] Y Gal et al. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In ICML, 2016.

[8] A Kendall et al. What uncertainties do we need in bayesian deep learning for computer vision? In NeurIPS, volume 30, 2017.

[9] V Kuleshov et al. Accurate uncertainties for deep learning using calibrated regression. In ICML, 2018.

https://sivert.info 6th Inter-experiment Machine LearningWorkshop — 29.01.2024 – 02.02.2024 aschilling@hs-worms.de

https://sivert.info
mailto: aschilling@hs-worms.de

	References

