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Range Verification with a Digital Tracking Calorimeter
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Background Range Estimator Evaluation
Pencil beam scanning proton therapy Model MAE & MAE RMSE & RMSE
* Cancer treatment with small proton beams (o = 3-7mm) Single task 0.82240.023  1.254+0.021 108240029  1.745 + 0.025
" Bragg peak at the end of proton range — highest damage to tissue Weighted sum 0.763+0.013  1.087+0.020  0.990 + 0.015 1.526 + 0.030
= Target different positions with different energies to cover tumor with Bragg peaks Homoscedastic 0.782 4 0.009 1.107 £ 0.015 1.020 £ 0.011 1.559 £ 0.023
Range verification Table 1. MAE and RMSE scores +1 standard deviation in mm for different learning scenarios and targets

= Particle th ith inh t tainties (Fig. 1 L. : :
article therapy comes with inherent uncertainties (Fig. 1) What does the prediction of a single spot mean for the treatment fraction?
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Figure 1. Sources of uncertainty (1.5¢, in mm) for a proton beam of 20 cm range in water [2] Properties

= Correct treatment: rr = 0.05

= Range verification: verify planned spot matches real spot in patient " Higher rr means lower treatment quality

= Goal: prediction error < 1 mm

Spot Rejection Rate Evaluation

Monte Carlo Simulations
Evaluation scenario

Proton Track * Introducing lateral shift of patient as error

—— Neutron/Photon Track

—— Electron Track
¥ Electron Hit

3¢ Bragg Peak

= Compute rr for increasing error, up to 10 mm
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Figure 2. Simulated proton treatment setup with digital tracking calorimeter distal to the patient 0.20 * i — = 0.15— e N
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Pediatric head phantom: 715-HN by CIRS Inc., digitized by Giacometti et al. [3] - i . 010/ : -
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= Clinically relevant beam energies (from matRad [4]) 005 - : ]
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(a) Uncalibrated uncertainty (b) Calibrated uncertainty

Digital tracking calorimeter (DTC): designed by the Bergen pCT Collaboration [5]
Figure 5. Spot rejection rates with increasing amount of error in the form of a lateral shift of the patient

= 43 detector layers

= 108 ALPIDE silicon pixel detectors per layer
Statistical Significance

Feature Generation How many spots need to be evaluated before rr becomes statistically significant?

Detector features: From detected point cloud data 010 o0
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617 features for each simulated pencil beam spot :
Figure 3. Example output for a treatment spot (a) Weighted sum of losses (b) Homoscedastic uncertainty-weighted losses

] Figure 6. Average p-values for t-tests sampled 10000 times for different spot counts with 1, 2, and 3 mm lateral shift
Neural Network Architecture

617 input features Conclusion
Network architecture l
« 3 fully-connected hidden layers (1024, 512, 128 units) = The DTC can be used for range verification in proton therapy
1024 units, sigmoid, 5% dropout = An uncertainty-aware neural network can be used for range verification with MAE ~ 1 mm

= 5% dropout [6] after each hidden layer

- Multitask learning: water range R and Bragg peak depth Z l = rr is a well-defined quality metric given any range estimator with calibrated uncertainty

512 units, sigmoid, 5% dropout

2 2 2 ‘l‘

Ttotal — Pmodel T 9 data

Uncertainty References

) ) . Alexander Schilling et al. Uncertainty-aware spot rejection rate as quality metric for proton therapy using a digital tracking calorimeter. PMB, 68(19), 2023. doi: 10/k29s.
128 units, sigmoid, 5% dropout

= Monte Carlo dropout [7] for epistemic uncertainty o / \
2

Harald Paganetti. Range uncertainties in proton therapy and the role of monte carlo simulations. PMB, 57(11), 2012. doi: 10/gj3v{3.

V Giacometti et al. Development of a high resolution voxelised head phantom for medical physics applications. Physica Medica, 33, 2017. doi: 10/f9wbs5.

model H-P Wieser et al. Development of the open-source dose calculation and optimization toolkit matrad. Medical Physics, 44(6), 2017. doi: 10/gjmvmg.

]
]
]
]
" Predicﬁﬂg aleatoric unce rtaiﬂty O-CQZGtCL for each ta rget [8] ] J Alme et al. A high-granularity digital tracking calorimeter optimized for proton CT. Front. Phys., 8, 2020. doi: 10/k37b.
]
]
]
]

N Srivastava et al. Dropout: a simple way to prevent neural networks from overfitting. JMLR, 15(1), 2014.

NN

= Uncertainty calibration with isotonic regression [9] MR R Hz a

Y Gal et al. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In ICML, 2016.
A Kendall et al. What uncertainties do we need in bayesian deep learning for computer vision? In NeurlPS, volume 30, 2017.

Figure 4 Neural network architecture V Kuleshov et al. Accurate uncertainties for deep learning using calibrated regression. In ICML, 2018.

R
Hochschule Tl J Rheinland-Pfélzische
WO r m S Technische Universitat

Kaiserslautern
Welalelel

University of Applied Sciences P

https.//sivert.info oth Inter-experiment Machine Learning Workshop — 29.01.2024 — 02.02.2024 aschilling@hs-worms.de



https://sivert.info
mailto: aschilling@hs-worms.de

	References

