
Differentiable Vertex Fitting
for Jet Flavour Tagging
Rachel Smith, Inês Ochoa, Rúben Inácio,
Jonathan Shoemaker, Michael Kagan

6th Inter-Experiment Machine Learning Workshop
30 January 2024

Differentiable Vertex Fitting
for Jet Flavour Tagging
Rachel Smith, Inês Ochoa, Rúben Inácio,
Jonathan Shoemaker, Michael Kagan

6th Inter-Experiment Machine Learning Workshop
30 January 2024

Rúben is giving the
poster!

Outline
● A history of vertex fitting algorithms in ATLAS
● Implicit differentiation and NDIVE: a differentiable vertex fitting algorithm
● Application of NDIVE in a flavour-tagging network
● Future work

arxiv preprint
github repo

3

https://arxiv.org/abs/2310.12804
https://github.com/rachsmith1/NDIVE

What do we mean by vertex fitting?
● Vertex finding: Identifying tracks that

originate at the same point in space

4

What do we mean by vertex fitting?
● Vertex finding: Identifying tracks that

originate at the same point in space

5

What do we mean by vertex fitting?
● Vertex finding: Identifying tracks that

originate at the same point in space
● Vertex fitting: Given a set of tracks, compute

the best estimate of the vertex parameters
(e.g. predicted vertex position, and initial
momentum vectors of all the tracks at the
predicted vertex position)

6

What do we mean by vertex fitting?
● Vertex finding: Identifying tracks that

originate at the same point in space
● Vertex fitting: Given a set of tracks, compute

the best estimate of the vertex parameters
(e.g. predicted vertex position, and initial
momentum vectors of all the tracks at the
predicted vertex position)

7

History of vertex fitting in ATLAS
Inclusive SV algorithm (SV1)

8
SV1 | JetFitter | DL1d | GN1 & GN2

https://cds.cern.ch/record/2270366/
https://arxiv.org/abs/2211.16345

https://cds.cern.ch/record/2270366/
https://arxiv.org/abs/2211.16345

History of vertex fitting in ATLAS
Inclusive SV algorithm (SV1)

1. Find all 2-track vertices

9
SV1 | JetFitter | DL1d | GN1 & GN2

https://cds.cern.ch/record/2270366/
https://arxiv.org/abs/2211.16345

https://cds.cern.ch/record/2270366/
https://arxiv.org/abs/2211.16345

History of vertex fitting in ATLAS
Inclusive SV algorithm (SV1)

1. Find all 2-track vertices
2. Reject vertices that come from unrelated vertices of interest (e.g. photon

conversion, hadronic detector interaction, long-lived decays)

10
SV1 | JetFitter | DL1d | GN1 & GN2

https://cds.cern.ch/record/2270366/
https://arxiv.org/abs/2211.16345

https://cds.cern.ch/record/2270366/
https://arxiv.org/abs/2211.16345

History of vertex fitting in ATLAS
Inclusive SV algorithm (SV1)

1. Find all 2-track vertices
2. Reject vertices that come from unrelated vertices of interest (e.g. photon

conversion, hadronic detector interaction, long-lived decays)
3. Using non-vetoed tracks, form a single inclusive secondary vertex

11
SV1 | JetFitter | DL1d | GN1 & GN2

https://cds.cern.ch/record/2270366/
https://arxiv.org/abs/2211.16345

https://cds.cern.ch/record/2270366/
https://arxiv.org/abs/2211.16345

History of vertex fitting in ATLAS
Inclusive SV algorithm (SV1)

1. Find all 2-track vertices
2. Reject vertices that come from unrelated vertices of interest (e.g. photon

conversion, hadronic detector interaction, long-lived decays)
3. Using non-vetoed tracks, form a single inclusive secondary vertex
4. If the resulting vertex has small probability, discard the track with the highest

contribution to the vertex 𝛸2

12
SV1 | JetFitter | DL1d | GN1 & GN2

https://cds.cern.ch/record/2270366/
https://arxiv.org/abs/2211.16345

https://cds.cern.ch/record/2270366/
https://arxiv.org/abs/2211.16345

History of vertex fitting in ATLAS
Inclusive SV algorithm (SV1)

1. Find all 2-track vertices
2. Reject vertices that come from unrelated vertices of interest (e.g. photon

conversion, hadronic detector interaction, long-lived decays)
3. Using non-vetoed tracks, form a single inclusive secondary vertex
4. If the resulting vertex has small probability, discard the track with the highest

contribution to the vertex 𝛸2

5. Repeat until given threshold (w/ invariant mass < 6 GeV)

13
SV1 | JetFitter | DL1d | GN1 & GN2

https://cds.cern.ch/record/2270366/
https://arxiv.org/abs/2211.16345

https://cds.cern.ch/record/2270366/
https://arxiv.org/abs/2211.16345

History of vertex fitting in ATLAS
Inclusive SV algorithm (SV1)

1. Find all 2-track vertices
2. Reject vertices that come from unrelated vertices of interest (e.g. photon

conversion, hadronic detector interaction, long-lived decays)
3. Using non-vetoed tracks, form a single inclusive secondary vertex
4. If the resulting vertex has small probability, discard the track with the highest

contribution to the vertex 𝛸2

5. Repeat until given threshold (w/ invariant mass < 6 GeV)
6. Final vertex typically combines decay products from b- and c-hadrons

14
SV1 | JetFitter | DL1d | GN1 & GN2

https://cds.cern.ch/record/2270366/
https://arxiv.org/abs/2211.16345

https://cds.cern.ch/record/2270366/
https://arxiv.org/abs/2211.16345

History of vertex fitting in ATLAS
Decay chain fitter (JetFitter)

15
SV1 | JetFitter | DL1d | GN1 & GN2

https://cds.cern.ch/record/2645405/
https://arxiv.org/abs/2211.16345

https://cds.cern.ch/record/2645405/
https://arxiv.org/abs/2211.16345

History of vertex fitting in ATLAS
Decay chain fitter (JetFitter)

1. Differs from SV1 in that several vertices can be reconstructed simultaneously

16
SV1 | JetFitter | DL1d | GN1 & GN2

https://cds.cern.ch/record/2645405/
https://arxiv.org/abs/2211.16345

https://cds.cern.ch/record/2645405/
https://arxiv.org/abs/2211.16345

History of vertex fitting in ATLAS
Decay chain fitter (JetFitter)

1. Differs from SV1 in that several vertices can be reconstructed simultaneously
2. A modified Kalman filter is used to find a shared line on which the primary, b-,

and c-vertices lie, approximating the flight path

17
SV1 | JetFitter | DL1d | GN1 & GN2

https://cds.cern.ch/record/2645405/
https://arxiv.org/abs/2211.16345

https://cds.cern.ch/record/2645405/
https://arxiv.org/abs/2211.16345

History of vertex fitting in ATLAS
Decay chain fitter (JetFitter)

1. Differs from SV1 in that several vertices can be reconstructed simultaneously
2. A modified Kalman filter is used to find a shared line on which the primary, b-,

and c-vertices lie, approximating the flight path
3. Minimize 𝛸2 containing the weighted residuals of the tracks wrt their vertices

18
SV1 | JetFitter | DL1d | GN1 & GN2

https://cds.cern.ch/record/2645405/
https://arxiv.org/abs/2211.16345

https://cds.cern.ch/record/2645405/
https://arxiv.org/abs/2211.16345

History of vertex fitting in ATLAS
Decay chain fitter (JetFitter)

1. Differs from SV1 in that several vertices can be reconstructed simultaneously
2. A modified Kalman filter is used to find a shared line on which the primary, b-,

and c-vertices lie, approximating the flight path
3. Minimize 𝛸2 containing the weighted residuals of the tracks wrt their vertices
4. Cluster combinations of two vertices until some compatibility threshold, then

do another 𝛸2 fit

19
SV1 | JetFitter | DL1d | GN1 & GN2

https://cds.cern.ch/record/2645405/
https://arxiv.org/abs/2211.16345

https://cds.cern.ch/record/2645405/
https://arxiv.org/abs/2211.16345

History of vertex fitting in ATLAS
Decay chain fitter (JetFitter)

1. Differs from SV1 in that several vertices can be reconstructed simultaneously
2. A modified Kalman filter is used to find a shared line on which the primary, b-,

and c-vertices lie, approximating the flight path
3. Minimize 𝛸2 containing the weighted residuals of the tracks wrt their vertices
4. Cluster combinations of two vertices until some compatibility threshold, then

do another 𝛸2 fit
5. Iterate until no more pairs of vertices above certain compatibility threshold

20
SV1 | JetFitter | DL1d | GN1 & GN2

https://cds.cern.ch/record/2645405/
https://arxiv.org/abs/2211.16345

https://cds.cern.ch/record/2645405/
https://arxiv.org/abs/2211.16345

History of vertex fitting in ATLAS
Current ATLAS baseline flavour tagger (DL1d)

21
SV1 | JetFitter | DL1d | GN1 & GN2

IPxD

DIPS

SV1

JetFitter

DL1dJet & Tracks

Low Level High Level

Im
p

ac
t

p
ar

am
et

er
b

as
ed

Se
co

nd
ar

y
 v

er
te

x
b

as
ed

https://cds.cern.ch/record/2839913/

https://cds.cern.ch/record/2839913/

History of vertex fitting in ATLAS
Current ATLAS baseline flavour tagger (DL1d)

22
SV1 | JetFitter | DL1d | GN1 & GN2

IPxD

DIPS

SV1

JetFitter

DL1dJet & Tracks

Low Level High Level

Im
p

ac
t

p
ar

am
et

er
b

as
ed

Se
co

nd
ar

y
 v

er
te

x
b

as
ed

Intermediate
non-differentiable

low-level algorithms

https://cds.cern.ch/record/2839913/

https://cds.cern.ch/record/2839913/

History of vertex fitting in ATLAS
GN1 & GN2

23
SV1 | JetFitter | DL1d | GN1 & GN2

https://cds.cern.ch/record/2811135/

https://cds.cern.ch/record/2811135/

History of vertex fitting in ATLAS
GN1 & GN2

1. New state-of-the-art end-to-end neural networks (graph or transformer)

24
SV1 | JetFitter | DL1d | GN1 & GN2

https://cds.cern.ch/record/2811135/

https://cds.cern.ch/record/2811135/

History of vertex fitting in ATLAS
GN1 & GN2

1. New state-of-the-art end-to-end neural networks (graph or transformer)
2. Auxiliary training objectives (track origin, track pair, jet flavour)

25
SV1 | JetFitter | DL1d | GN1 & GN2

https://cds.cern.ch/record/2811135/

https://cds.cern.ch/record/2811135/

History of vertex fitting in ATLAS
GN1 & GN2

1. New state-of-the-art end-to-end neural networks (graph or transformer)
2. Auxiliary training objectives (track origin, track pair, jet flavour)
3. No usage of intermediate low-level algorithms

26
SV1 | JetFitter | DL1d | GN1 & GN2

https://cds.cern.ch/record/2811135/

https://cds.cern.ch/record/2811135/

History of vertex fitting in ATLAS
GN1 & GN2

1. New state-of-the-art end-to-end neural networks (graph or transformer)
2. Auxiliary training objectives (track origin, track pair, jet flavour)
3. No usage of intermediate low-level algorithms
4. No explicit secondary (or tertiary) vertex fitting!

27
SV1 | JetFitter | DL1d | GN1 & GN2

https://cds.cern.ch/record/2811135/

https://cds.cern.ch/record/2811135/

Neural Differentiable Vertexing Layer (NDIVE)
We propose to reintroduce explicit vertex reconstruction into end-to-end ML
b-tagging algorithms via a vertexing layer that performs both vertex finding and
vertex fitting

28

Neural Differentiable Vertexing Layer (NDIVE)
We propose to reintroduce explicit vertex reconstruction into end-to-end ML
b-tagging algorithms via a vertexing layer that performs both vertex finding and
vertex fitting

29

Neural network trained to
assign weights to tracks

Neural Differentiable Vertexing Layer (NDIVE)
We propose to reintroduce explicit vertex reconstruction into end-to-end ML
b-tagging algorithms via a vertexing layer that performs both vertex finding and
vertex fitting

30

Neural network trained to
assign weights to tracks

Vertex fitting algorithm w/ tracks
and weights as inputs and no

trainable parameters

Inclusive vertex fit formulation

31

● We perform an inclusive vertex fit with per-track
weights, closely following Billoir’s algorithm

● The values to be optimized are the vertex
position v and track momentum at the vertex
{pi}: x = (v, {pi})

● The input data are the measured track
parameters qi = (d0, z0, 𝜙, 𝜃, 𝜌) and their
covariance matrix Vi (perigee representation)

● Additionally, a set of per-track weights wi which
determines how much each track contributes to
the vertex fit

d0 : signed transverse impact parameter
z0 : longitudinal impact parameter
𝜙 : polar angle of trajectory
𝜃 : azimuthal angle of trajectory
𝜌 : signed curvature

https://www.sciencedirect.com/science/article/pii/0168900292908593

Inclusive vertex fit formulation

32

● The following objective function 𝑆 is minimized:

𝑆 = 𝑋2 = ∑ wi (qi - hi(v, pi))T Vi
-1 (qi - hi(v, pi))

● We minimize the difference between the
measured track parameters and the track
parameters obtained by extrapolating from
the predicted vertex to the perigee

● Measured and fit parameters are related via a
track model qmodel,i = hi(v, pi) (e.g. a helical model
of a curved track)

Inclusive vertex fit formulation

33

● The following objective function 𝑆 is minimized:

𝑆 = 𝑋2 = ∑ wi (qi - hi(v, pi))T Vi
-1 (qi - hi(v, pi))

● We minimize the difference between the
measured track parameters and the track
parameters obtained by extrapolating from
the predicted vertex to the perigee

● Measured and fit parameters are related via a
track model qmodel,i = hi(v, pi) (e.g. a helical model
of a curved track)

We need the derivatives of the fitted vertex
v wrt the weights wi to train downstream or

upstream neural networks

Implicit differentiation

34

● Explicit vs. Implicit layers:
○ An explicit layer with input x and output z corresponding to the application

of some explicit function f:

z = f(x)

○ An implicit layer would instead be defined via joint function of both x and z,
where the output z of the layer is required to satisfy some constraint such as
finding the root of an equation:

Find z such that g(x,z) = 0

http://implicit-layers-tutorial.org

http://implicit-layers-tutorial.org

Implicit differentiation

35

● Explicit vs. Implicit layers:
○ An explicit layer with input x and output z corresponding to the application

of some explicit function f:

z = f(x)

○ An implicit layer would instead be defined via joint function of both x and z,
where the output z of the layer is required to satisfy some constraint such as
finding the root of an equation:

Find z such that g(x,z) = 0

http://implicit-layers-tutorial.org

Implicit layers have the advantage that we
can use the implicit function theorem to
directly compute gradients at the solution
point of the equation, without having to store
any intermediate variables

http://implicit-layers-tutorial.org

Implicit differentiation

36

● Explicit vs. Implicit layers:
○ An explicit layer with input x and output z corresponding to the application

of some explicit function f:

z = f(x)

○ An implicit layer would instead be defined via joint function of both x and z,
where the output z of the layer is required to satisfy some constraint such as
finding the root of an equation:

Find z such that g(x,z) = 0

http://implicit-layers-tutorial.org

Implicit layers have the advantage that we
can use the implicit function theorem to
directly compute gradients at the solution
point of the equation, without having to store
any intermediate variables

This improves memory consumption and
often numerical accuracy (i.e. because we do
not need to backpropagate through all fitting
iterations)

http://implicit-layers-tutorial.org

Implicit differentiation

37

● The following objective function 𝑆 is minimized:

𝑆 = 𝑋2 = ∑ wi (qi - hi(v, pi))T Vi
-1 (qi - hi(v, pi))

Implicit differentiation

38

● The following objective function 𝑆 is minimized:

𝑆 = 𝑋2 = ∑ wi (qi - hi(v, pi))T Vi
-1 (qi - hi(v, pi))

● Specify the conditions we want the layer output
to satisfy:

Implicit differentiation

39

● The following objective function 𝑆 is minimized:

𝑆 = 𝑋2 = ∑ wi (qi - hi(v, pi))T Vi
-1 (qi - hi(v, pi))

● Specify the conditions we want the layer output
to satisfy:

● Note that at the minimum of the 𝛸2 we have:

Implicit differentiation

40

● The following objective function 𝑆 is minimized:

𝑆 = 𝑋2 = ∑ wi (qi - hi(v, pi))T Vi
-1 (qi - hi(v, pi))

● Specify the conditions we want the layer output
to satisfy:

● Note that at the minimum of the 𝛸2 we have:

● Expand derivative:

Implicit differentiation

41

● The following objective function 𝑆 is minimized:

𝑆 = 𝑋2 = ∑ wi (qi - hi(v, pi))T Vi
-1 (qi - hi(v, pi))

● Specify the conditions we want the layer output
to satisfy:

● Note that at the minimum of the 𝛸2 we have:

● Expand derivative:

Derivative of the fitted
vertex with respect to
the input parameters

(the track weights)

Implicit differentiation

42

Implicit differentiation

43

Forward pass: iterative numerical
algorithm to perform optimization

Implicit differentiation

44

Forward pass: iterative numerical
algorithm to perform optimization

Backward pass: done with a custom
derivative, using implicit differentiation

Implicit differentiation

45

Forward pass: iterative numerical
algorithm to perform optimization

Backward pass: done with a custom
derivative, using implicit differentiation

Our differentiable vertex fitting layer is now ready to be inserted
into any neural network! (i.e. integrating domain knowledge)

Samples & Input Variables

46

● Top pair production from proton-proton collisions simulated at √s = 14 TeV
● Generated with Pythia8 with ATLAS detector parameterization in Delphes
● 500k training jets, 180k validation, 180k testing

Training features:
● Track perigee parameters

and their errors
● Signed d0 and z0

significances
● log (track pT / jet pT)
● ΔR (track, jet)

https://zenodo.org/records/4044628

https://zenodo.org/records/4044628

Track selection performance

47

● Efficiency: number of decay tracks selected* over all decay tracks
● Purity: number of decay tracks selected* over all selected tracks

* “selected tracks” => per-track weights normalized by maximum
weight in each jet and required to be above > 0.5

Vertex reconstruction performance

48

● “Perfect track selection” => weights set to 0 or 1 based on true origin of track
● “No track selection” => all tracks in the jet are used in the fit with weight 1

Integrating vertex fitting into
a flavour tagging model (FTAG+NDIVE)

49

Track Extrapolator

50

● Measured track parameters are typically expressed at a given point along the
trajectory wrt a reference point (commonly, the primary vertex)

● Track Extrapolator module incorporates knowledge of expected track geometry to
extrapolate each track to the point of closest approach to the vertex predicted by
NDIVE, enabling us to construct an alternative representation of the tracks

● Implemented with JAX’s autodiff

ROC curves

51

Future Work

52

● We don’t claim that this is the best way to
integrate differentiable vertex fitting into
flavour tagging

● These developments are generic, applicable
to other vertex fitting algorithms and other
schemes for integrating the vertex
information into neural network architecture

● To illustrate possible improvements, we
show the potential for huge gains given an
ideal scenario with perfect track selection

Conclusion

53

● We introduce NDIVE, the first differentiable vertex fitting algorithm

● We formulate vertex fitting as an optimization problem
○ We define gradients of the optimized vertex through implicit differentiation
○ Can be passed to upstream or downstream networks for training

● This is an application of differential programming for integrating physics
knowledge into neural networks
○ NDIVE can be integrated into end-to-end b-tagging algorithms, explicitly

reintroducing vertex reconstruction geometry
○ Part of the larger effort to apply differentiable programming in HEP

Backup

54

Billoir algorithm for inclusive vertex fitting

55

Dataset

56

FTAG baseline

57

CREDITS: This presentation template was created by Slidesgo, and
includes icons by Flaticon, and infographics & images by Freepik

58

https://bit.ly/3A1uf1Q
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

