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Outline
● A history of vertex fitting algorithms in ATLAS
● Implicit differentiation and NDIVE: a differentiable vertex fitting algorithm
● Application of NDIVE in a flavour-tagging network
● Future work
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Inclusive SV algorithm (SV1)
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1. Find all 2-track vertices
2. Reject vertices that come from unrelated vertices of interest (e.g. photon 

conversion, hadronic detector interaction, long-lived decays)
3. Using non-vetoed tracks, form a single inclusive secondary vertex
4. If the resulting vertex has small probability, discard the track with the highest 

contribution to the vertex 𝛸2
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History of vertex fitting in ATLAS
Inclusive SV algorithm (SV1)

1. Find all 2-track vertices
2. Reject vertices that come from unrelated vertices of interest (e.g. photon 

conversion, hadronic detector interaction, long-lived decays)
3. Using non-vetoed tracks, form a single inclusive secondary vertex
4. If the resulting vertex has small probability, discard the track with the highest 

contribution to the vertex 𝛸2

5. Repeat until given threshold (w/ invariant mass < 6 GeV)
6. Final vertex typically combines decay products from b- and c-hadrons
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History of vertex fitting in ATLAS
Decay chain fitter (JetFitter)

1. Differs from SV1 in that several vertices can be reconstructed simultaneously
2. A modified Kalman filter is used to find a shared line on which the primary, b-, 

and c-vertices lie, approximating the flight path
3. Minimize 𝛸2 containing the weighted residuals of the tracks wrt their vertices
4. Cluster combinations of two vertices until some compatibility threshold, then 

do another 𝛸2 fit
5. Iterate until no more pairs of vertices above certain compatibility threshold
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History of vertex fitting in ATLAS
Current ATLAS baseline flavour tagger (DL1d)
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History of vertex fitting in ATLAS
GN1 & GN2
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History of vertex fitting in ATLAS
GN1 & GN2

1. New state-of-the-art end-to-end neural networks (graph or transformer)
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History of vertex fitting in ATLAS
GN1 & GN2

1. New state-of-the-art end-to-end neural networks (graph or transformer)
2. Auxiliary training objectives (track origin, track pair, jet flavour)
3. No usage of intermediate low-level algorithms
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History of vertex fitting in ATLAS
GN1 & GN2

1. New state-of-the-art end-to-end neural networks (graph or transformer)
2. Auxiliary training objectives (track origin, track pair, jet flavour)
3. No usage of intermediate low-level algorithms
4. No explicit secondary (or tertiary) vertex fitting! 
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Neural Differentiable Vertexing Layer (NDIVE) 
We propose to reintroduce explicit vertex reconstruction into end-to-end ML 
b-tagging algorithms via a vertexing layer that performs both vertex finding and 
vertex fitting
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Neural Differentiable Vertexing Layer (NDIVE) 
We propose to reintroduce explicit vertex reconstruction into end-to-end ML 
b-tagging algorithms via a vertexing layer that performs both vertex finding and 
vertex fitting
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Neural network trained to 
assign weights to tracks

Vertex fitting algorithm w/ tracks 
and weights as inputs and no 

trainable parameters 



Inclusive vertex fit formulation

31

● We perform an inclusive vertex fit with per-track 
weights, closely following Billoir’s algorithm

● The values to be optimized are the vertex 
position v and track momentum at the vertex 
{pi}: x = (v, {pi})

● The input data are the measured track 
parameters qi = (d0, z0, 𝜙, 𝜃, 𝜌) and their 
covariance matrix Vi (perigee representation)

● Additionally, a set of per-track weights wi which 
determines how much each track contributes to 
the vertex fit

d0 : signed transverse impact parameter
z0 : longitudinal impact parameter
𝜙 : polar angle of trajectory
𝜃 : azimuthal angle of trajectory
𝜌 : signed curvature

https://www.sciencedirect.com/science/article/pii/0168900292908593


Inclusive vertex fit formulation
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● The following objective function 𝑆 is minimized:

𝑆 = 𝑋2 = ∑ wi (qi - hi(v, pi))T Vi
-1 (qi - hi(v, pi))

● We minimize the difference between the 
measured track parameters and the track 
parameters obtained by extrapolating from 
the predicted vertex to the perigee

● Measured and fit parameters are related via a 
track model qmodel,i = hi(v, pi) (e.g. a helical model 
of a curved track)



Inclusive vertex fit formulation
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● The following objective function 𝑆 is minimized:

𝑆 = 𝑋2 = ∑ wi (qi - hi(v, pi))T Vi
-1 (qi - hi(v, pi))

● We minimize the difference between the 
measured track parameters and the track 
parameters obtained by extrapolating from 
the predicted vertex to the perigee

● Measured and fit parameters are related via a 
track model qmodel,i = hi(v, pi) (e.g. a helical model 
of a curved track)

We need the derivatives of the fitted vertex 
v wrt the weights wi to train downstream or 

upstream neural networks



Implicit differentiation
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● Explicit vs. Implicit layers:
○ An explicit layer with input x and output z corresponding to the application 

of some explicit function f:

z = f(x)

○ An implicit layer would instead be defined via joint function of both x and z, 
where the output z of the layer is required to satisfy some constraint such as 
finding the root of an equation:

Find z such that g(x,z) = 0

http://implicit-layers-tutorial.org
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● Explicit vs. Implicit layers:
○ An explicit layer with input x and output z corresponding to the application 

of some explicit function f:

z = f(x)

○ An implicit layer would instead be defined via joint function of both x and z, 
where the output z of the layer is required to satisfy some constraint such as 
finding the root of an equation:

Find z such that g(x,z) = 0

http://implicit-layers-tutorial.org

Implicit layers have the advantage that we 
can use the implicit function theorem to 
directly compute gradients at the solution 
point of the equation, without having to store 
any intermediate variables

This improves memory consumption and 
often numerical accuracy (i.e. because we do 
not need to backpropagate through all fitting 
iterations)

http://implicit-layers-tutorial.org
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● The following objective function 𝑆 is minimized:
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● Specify the conditions we want the layer output 
to satisfy:
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● The following objective function 𝑆 is minimized:

𝑆 = 𝑋2 = ∑ wi (qi - hi(v, pi))T Vi
-1 (qi - hi(v, pi))

● Specify the conditions we want the layer output 
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Implicit differentiation
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● The following objective function 𝑆 is minimized:

𝑆 = 𝑋2 = ∑ wi (qi - hi(v, pi))T Vi
-1 (qi - hi(v, pi))

● Specify the conditions we want the layer output 
to satisfy:

● Note that at the minimum of the 𝛸2 we have:

● Expand derivative:

Derivative of the fitted 
vertex with respect to 
the input parameters 

(the track weights)
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42



Implicit differentiation
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Forward pass: iterative numerical 
algorithm to perform optimization



Implicit differentiation
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Forward pass: iterative numerical 
algorithm to perform optimization

Backward pass: done with a custom 
derivative, using implicit differentiation



Implicit differentiation
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Forward pass: iterative numerical 
algorithm to perform optimization

Backward pass: done with a custom 
derivative, using implicit differentiation

Our differentiable vertex fitting layer is now ready to be inserted 
into any neural network! (i.e. integrating domain knowledge)



Samples & Input Variables
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● Top pair production from proton-proton collisions simulated at √s = 14 TeV
● Generated with Pythia8 with ATLAS detector parameterization in Delphes
● 500k training jets, 180k validation, 180k testing

Training features:
● Track perigee parameters 

and their errors
● Signed d0 and z0 

significances
● log (track pT / jet pT)
● ΔR (track, jet)

https://zenodo.org/records/4044628

https://zenodo.org/records/4044628


Track selection performance
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● Efficiency: number of decay tracks selected* over all decay tracks
● Purity: number of decay tracks selected* over all selected tracks

* “selected tracks” => per-track weights normalized by maximum 
weight in each jet and required to be above > 0.5



Vertex reconstruction performance
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● “Perfect track selection” => weights set to 0 or 1 based on true origin of track
● “No track selection” => all tracks in the jet are used in the fit with weight 1



Integrating vertex fitting into 
a flavour tagging model (FTAG+NDIVE) 
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Track Extrapolator
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● Measured track parameters are typically expressed at a given point along the 
trajectory wrt a reference point (commonly, the primary vertex)

● Track Extrapolator module incorporates knowledge of expected track geometry to 
extrapolate each track to the point of closest approach to the vertex predicted by 
NDIVE, enabling us to construct an alternative representation of the tracks

● Implemented with JAX’s autodiff



ROC curves
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Future Work
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● We don’t claim that this is the best way to 
integrate differentiable vertex fitting into 
flavour tagging

● These developments are generic, applicable 
to other vertex fitting algorithms and other 
schemes for integrating the vertex 
information into neural network architecture

● To illustrate possible improvements, we 
show the potential for huge gains given an 
ideal scenario with perfect track selection



Conclusion
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● We introduce NDIVE, the first differentiable vertex fitting algorithm

● We formulate vertex fitting as an optimization problem
○ We define gradients of the optimized vertex through implicit differentiation
○ Can be passed to upstream or downstream networks for training

● This is an application of differential programming for integrating physics 
knowledge into neural networks
○ NDIVE can be integrated into end-to-end b-tagging algorithms, explicitly 

reintroducing vertex reconstruction geometry
○ Part of the larger effort to apply differentiable programming in HEP



Backup
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Billoir algorithm for inclusive vertex fitting
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Dataset
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FTAG baseline
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