Reinforcement Learning Algorithms for Charged Particle Tracking with Applications in Proton Computed Tomography

Tobias Kortus¹ Ralf Keidel¹ Nicolas R. Gauger²

¹ Center for Technology and Transfer, University of Applied Sciences Worms ² Chair for Scientific Computing, University of Kaiserslautern-Landau (RPTU)

on behalf of the Bergen $\ensuremath{\mathsf{pCT}}$ collaboration

6th IML Workshop – January 30, 2024

Reinforcement Learning for Charged Particle Tracking

Proton Computed Tomography and Particle Tracking

- **Goal**: Reconstruct path of protons in multi-layer detector after patient to obtain sufficient information (energy, direction) required for image reconstruction.
- Bergen pCT detector prototype [1]:
 - 2 tracking layer
 - 41 detector-absorber layer

Image courtesy: Aehle et al., 2023 (https://doi.org/10.1088/1361-6560/ad0bdd)

Reinforcement Learning for Particle Tracking

- **Goal**: Find a good reconstrution policy π^* by interacting with the environment.
- **Policy**: Decision strategy of the agent for each given state.
- Value: How good is a state in the long run (expected discounted future reward).

Representation as a Directed Acyclic Graph

- Directed acylic graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
 - $\mathcal{V} = \{v_i\}_{\{i=1,N\}}$: Particle hit centroids
 - \$\mathcal{E} = \{e_{ij}\}_{\{i=1,M\}}\$: Possible track segments (actions) in opposite direction to the traversal direction.

• Parametrization of vertices and edges as

• Environment dynamics defined by the edges between particle hits.

Kortus et al. (Bergen pCT)

Reinforcement Learning for Charged Particle Tracking 6th IML Workshop – January 30, 2024 5/21

・ロト ・回 ト ・ ヨ ト ・ ヨ

Kortus et al. (Bergen pCT)

Reinforcement Learning for Charged Particle Tracking 6th IML Workshop – January 30, 2024

э

8/21

Single-agent Optimization of Behavior Policy

Multiple optimization steps for π_{θ} and V_{θ}^{π} using Proximal Policy Optimization (PPO) [3]

Kortus et al. (Bergen pCT)

Reinforcement Learning for Charged Particle Tracking 6th IML Workshop – January 30, 2024 10 / 21

< 個 ▶ < Ξ

-

Limitations of Single-Agent Reinforcement Learning

Limitations of Single-Agent Reinforcement Learning

- **Partial observability:** reconstruction w.r.t. entire readout frame remains still partial observable (other tracks are not taken into consideration)
- Ambiguities in assignments: Conflicts in reconstruction can assign the same particle to multiple tracks → generation of implausible tracks.

Design considerations for training MARL agents for particle tracking:

- Dec-POMDP: Consider multiple decentralized agents (similar to single-agent) with only local observations per agent, only limited communication → minimal performance impact by avoiding global information or complex communication protocols.
- ② CTDE: Use information during training that would be unavailable during inference (centralized critic) → Better training performance (reduces instationarity).
- ③ Constraints. Enforce agreement between agents → unique particle assignment (constraint satisfaction by designing a safety layer [4], [5]).

Multi-Agent Network Architecture (Work in Progress)

Kortus et al. (Bergen pCT)

Reinforcement Learning for Charged Particle Tracking 6th IML Workshop – January 30, 2024 13/21

Multi-Agent Network Architecture (Work in Progress)

Kortus et al. (Bergen pCT)

Reinforcement Learning for Charged Particle Tracking 6th IML Workshop – January 30, 2024 14/21

Multi-Agent Network Architecture (Work in Progress)

▶ ∢ ⊒

Multi-agent Optimization of Behavior Policy

Kortus et al. (Bergen pCT)

Reinforcement Learning for Charged Particle Tracking 6th IML Workshop – January 30, 2024 16/21

イロト イヨト イヨト

Preliminary Results (Work in Progress)

		100 mm Water		150 mm Water		200 mm Water	
Density	Algorithm	p [%]	ϵ [%]	p [%]	ϵ [%]	p [%]	ϵ [%]
100	Search [9]	83.0±0.0	74.6±0.0	86.5±0.0	79.0±0.0	87.4±0.0	80.3±0.0
	PPO [10]	85.6±0.3	75.2±0.5	88.8±0.5	79.0±0.5	89.5±0.4	80.8±0.5
	MADDPG*	90.8 ±−.−	75.7 ±−.−	92.8 ±	79.1 ±−.−	93.1 ±−.−	81.0 ±
150	Search [9]	79.1±0.0	70.9±0.0	83.2±0.0	75.7±0.0	84.7±0.0	77.7±0.0
	PPO [10]	80.5±0.4	70.8±0.3	83.8±0.7	74.4±0.6	85.3±0.6	76.9±0.5
	MADDPG*	87.3 ±−.−	71.0 ±−.−	89.1 ±−.−	74.2±−.−	90.7 ±−.−	73.6±−.−
200	Search [9]	75.4±0.0	67.4±0.0	80.1±0.0	72.9±0.5	81.6±0.4	75.0±0.0
	PPO [10]	75.3±0.6	66.6±0.6	80.0±0.8	70.9±0.6	81.7±0.6	73.8±0.5
	MADDPG*	83.0 ±−.−	65.6±−.−	86.9 ±	71.1±−.−	87.7 ±−.−	73.6±−.−

イロト 不良 ト イヨト イヨ

э

17 / 21

Kortus et al. (Bergen pCT)

Reinforcement Learning for Charged Particle Tracking 6th IML Workshop – January 30, 2024

Conclusion and Current/Future Work

Conclusion

- Reinforcement learning proves to be a promising optimization technique for track reconstruction leveraging deep neural networks while requiring no manual supervision.
- Architecture allows for generalization to previously unseen phantom geometries and particle densities.
- More information & results: 10.1109/tpami.2023.3305027

Current/Future Work

- When reconstructing a single, the system remains still partial observable (influence of other tracks). → Multi-Agent Reinforcement Learning (MARL).
- First promising results, further work required to stabilize training.

The Bergen pCT Collaboration

- University of Bergen, Norway
- Helse Bergen, Norway
- Western Norway University of Applied Science, Bergen, Norway
- Wigner Research Center for Physics, Budapest, Hungary
- DKFZ, Heidelberg, Germany
- Saint Petersburg State University, Saint Petersburg, Russia
- Utrecht University, Netherlands

- RPE LTU, Kharkiv, Ukraine
- Suranaree University of Technology, Nakhon Ratchasima, Thailand
- China Three Gorges University, Yichang, China
- University of Applied Sciences Worms, Germany
- University of Oslo, Norway
- Eötvös Loránd University, Budapest, Hungary
- University of Kaiserslautern Landau, Germany

Contact: kortus@hs-worms.de

Kortus et al. (Bergen pCT)

6th IML Workshop – January 30, 2024 19 / 21

References I

- J. Alme *et al.*, "A high-granularity digital tracking calorimeter optimized for proton ct," *Frontiers in Physics*, vol. 8, pp. 1–20, October 2020, ISSN: 2296424X. DOI: 10.3389/fphy.2020.568243.
- [2] A. Vaswani et al., "Attention is all you need," Advances in Neural Information Processing Systems, vol. 2017-Decem, pp. 5999–6009, Nips 2017, ISSN: 10495258.
- J. Schulman *et al.*, "Proximal policy optimization algorithms,", pp. 1–12, 2017. [Online]. Available: http://arxiv.org/abs/1707.06347.
- G. Dalal et al., "Safe exploration in continuous action spaces,", 2018. [Online]. Available: http://arxiv.org/abs/1801.08757.
- [5] Z. Sheebaelhamd *et al.*, "Safe deep reinforcement learning for multi-agent systems with continuous action spaces,", 2021. [Online]. Available: http://arxiv.org/abs/2108.03952.

イロト 不得下 イヨト イヨト

3

20 / 21

References II

- [6] O. Vinyals et al., "Pointer networks," Advances in Neural Information Processing Systems, vol. 2015-Janua, pp. 2692–2700, 2015, ISSN: 10495258.
- [7] M. Vlastelica *et al.*, "Differentiation of blackbox combinatorial solvers," 8th International Conference on Learning Representations, ICLR 2020, pp. 1–19, 2020.
- [8] R. Lowe *et al.*, "Multi-agent actor-critic for mixed cooperative-competitive environments," *Advances in Neural Information Processing Systems*, vol. 2017-Decem, pp. 6380–6391, 2017, MADDPG, ISSN: 10495258.
- [9] H. E. Pettersen *et al.*, "Proton tracking algorithm in a pixel-based range telescope for proton computed tomography," *arXiv*, 2020, ISSN: 23318422.
- [10] T. Kortus *et al.*, "Towards neural charged particle tracking in digital tracking calorimeters with reinforcement learning," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2023, ISSN: 19393539. DOI: 10.1109/TPAMI.2023.3305027.