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Standard Model (SM) of particle physics ATLAS detector

» A multi-purpose detector, designed to study Higgs boson physics,

> A theory that describes elementary particles (fermions) and their SM precision measurements and new physics searches
Standard Model of Elementary Particles interactions (bosons) » Consists of the Inner Detector, Calorimeters and Muon
_ _ _ _ » Based on quantum mechanics + special relativity '
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~ Fermions categorized into quarks and leptons » Particles produced after collisions leave different signatures at
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Electron identification

» Electron identification has an important role in a large fraction of ATLAS physics analyses

Input variables for CNN

Electron candidates are split into six electron classes (Prompt electrons, Charge-flip, Photon conversion,

v

» ATLAS currently deployed two electron identification techniques: Heavy flavor, Light flavor e/« and Light flavor hadrons) based on their truth information
» Likelihood (LH): has been mainly used since 2012, takes shower shape, » In most use-cases, charge-flip electrons are considered as signal, just like the prompt electron class
track and track-cluster variables as input » Other classes are considered as background
> Deep Neural Network (DNN): uses same input variables as the LH, » Same High-Level inputs as LH and DNN plus two ECIDS variables developed for charge-flip identification

exploit their correlations, recently introduced in Run-3 third layer hadronic calorimeter » Additional tracks contain important information that is used by the CNN algorithm for up to five tracks

Type | Description | Symbol

> |dentification can be improved by using image recognition with Anx Ap=0.05x0.0245 ~ Calorimeter images represent the mean energy deposited in cells divided by the electron energy (in %)
Convolutional Neural Network (CNN) second layer Clectromagnetic |
. . . o Aqx Ap—0.025x0.0245 1 ¢ // ATLAS Simulation Preliminary ; \Vs=13TeV ; || <1.3
» CNN's input: High-level variables, Additional track calorimeter A | promptElecron  Charge Fip  Photen Comerson  Hemy Fiavour LightFavour e/ _ LightFevour Haon
variables, and Calorimeter images first layer (strips) (e 1 / < -i -i -i -E - -i
AnxAp=0.0031x0.098  Z : /; CNN Input Variables for Each Track (up to five) e garel s e carel 1 v sorel e el
presampler - / g -[ -i -i -[ =

TRT (73 layers)

[ JANL L[ ] |

L] ]

Ratio of the momentum of track j to the energy of the electron : e el LT —— L T —

. . pj/b 10; 10;
Matching candidate i w
variables An between the track ;j and the electron candidate position An; 2 :

\ A¢ between the track j and the electron candidate position Ad; SRS Sl Sl SlESCE S —— L ——

Number of B
hits Number of hits in the SCT detector
Number of hits in the TRT detector n%RT

nSCT Tile Barrel L1 Tile Barrel L1 Tile Barrel L1 Tile Barrel L1 Tile Barrel L1 Tile Barrel L1

r 102 102
10! 10!
10° 10°

107t 107!

- 1072 1072

- 1073 10-3

Tile Barrel L2

Transverse impact parameter relative to the beamline d!
Uncertainty on d o (do); S w

Track parameters | Longitudinal impact parameter relative to the beamline zé -i -i -i -i - e -i
and fit quality Charge of the track q; o -
Tile Barrel L3 )

x 7 of the track fit I EE—
. Number of degrees of freedom of the track fit ndof -i -[ -i -E - [ -
insertable B-la;yer Matched vertex index number VX il —

beam spot

do

AN

Convolutional Neural Network architecture

» Global architecture has 3 CNNs dedicated to coarse images, fine images and tracks %22‘?!52?5‘350'5“%91?? ChN
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Neural Networks Performance

Towards training CNN in data

» Excellent separation observed between signal and all background classes, » Signal = prompt + charge-flip
especially in the case of light-flavour hadron » Four CNN models trained to compare different components of the » CNN has been trained only on electron candidates generated by
» Other classes like heavy flavor or photon conversion are more challenging global architecture Monte Carlo simulation
~ When all components are used together, best performance achieved » Simulation of fake electron object is imperfect, particularly the
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