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Figure 4 & 5: Simula�on of the e⁺e⁻ pair distribu�on from J/ψ decays in Pb−Pb collisions at √sNN = 5.02 TeV as a func�on of mee. The solid black line shows the sum 
of all pairs with opposite signs and the dashed grey line indicates the sum of all pairs with the same sign. The green color illustrates the reconstructed pairs from 
the prompt decays while the blue color highlights the pairs origina�ng from the non-prompt decays.  The le� plot shows the mass distribu�on without a prefilte-
ring while the right plot shows the distrbu�on a�er the applica�on of the ML-based prefilter.

Figure 3: Confusion matrix 
of the mul�-class model to 
visually represent the clas-
sifica�on performance. Dia-
gonal entries show the cor-
rect predic�ons of each 
class, while off-diagonal 
entries represent misclassi-
fica�ons. The classifica�on 
performance can be es�-
mated using the number of 
True Posi�ves (TP), False 
Posi�ves (FP), True Nega�-
ves (TN), and False Nega�-
ves (FN) by defining the pre-
cision=TP/(TP+FP) and the 
recall=TP/(TP+FN).

Figure 2: Receiver Opera�ng Characteris�c (ROC) curves for the classical DCAee  ana-
lysis and a trained NN illustra�ng their performance in separa�ng prompt and non- 
prompt J/ψ decays.  The diagonal dashed line represents random guessing.

Figure 6: Feature importance of the mul�-class model illustrated 
the horizontal bars. The most important features are ordered 
from top to bo�om. The length of each bar illustrates the impact 
of this observable on the final predic�on for each class highligh-
ted by the different colors.
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Binary classifica�on Mul�-class classifica�on
Inclusion of combinatorial background (Bkg) pairs
- Model tuned for high precision in iden�fying 
  non-prompt pairs (high confidence threshold)
 → Below-threshold pairs are labeled as prompt Bkg 
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Dielectrons are produced at all stages of the ultra-relativistic
heavy-ion collision and leave the system with negligible
final-state interaction 
→ Ideal probe to study the properties of the created medium

Their invariant mass (mee) can be utilised to differentiate
between early and late contributions of the collision [1]:
→ At higher masses (1.1< mee<2.7 GeV/c²):
 - Correlated semi-leptonic decays of heavy-flavor hadrons 
 - Quark-gluon plasma (QGP)

Heavy-flavor production expected to be modified
by cold-nuclear matter and hot-medium effects
- Modeling these effects introduces large uncertainties
→ Cocktail-indepent method needed to separate
     non-prompt contributions from the QGP radiation
 

 

Calculate DCA on pair level taking the resolution into account:

However, this definition neglects information on the sign, correlation and
longitudinal information of the DCA
→ New approach: Apply machine learning (ML) to include all possible
     information and correlations

 

 

Direct comparison of separa�on capabili�es
of different approaches using the signal (S) of 
e⁺e⁻ pairs from prompt and non-prompt J/ψ decays
→ The ML-based model exhibits a significantly 
     be�er performance independent of threshold 

Figure 1: Dielectron produc�on in central Pb−Pb collisions at 
√sNN = 5.02 TeV as a func�on of mee compared to different expecta-
�ons from hadronic decays [1].  The blue line assumes binary colli-
sion scaling for heavy-flavor produc�on, while the grey line inclu-
des the nPDFs from EPS09 and the measured RAA of c/b → e⁺⁻ [2]. 
The bo�om panels show the respec�ve cocktail ra�os together 
with theory calcula�ons for thermal contribu�ons [4,5].
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Distance-of-closest approach (DCA) in the transverse plane:
 

Track candidate filtering:
Before the combinatorial pairing of all electron and positrons reject all electrons and positrons
associated to a non-prompt pair identified by the multi-class model
→ Removes all identified non-prompt pairs (S+Bkg) as well as all pairs which share just one track 
     associated to these electrons and positrons
 → Significantly reduces the combinatorial background by 33.6%  and increases the S/Bkg by 64.4%
 → Random rejection of signal pairs due to misclassification of about 5.5%

Prefilter

Separation of prompt and 
non-prompt sources based 
on their distance to the
primary vertex:
→ Decay length of charm 
     and beauty hadrons
     much larger than 
     prompt sources

 
[3]

Input Monte Carlo simulation:
 - Underlying event from Hijing simulation of Pb−Pb collisions
   at √sNN = 5.02 TeV with a full  ALICE Run 2 detector response
 - Up to 10 J/ψ per event in |η|< 1 injected depending on 
   the centrality (70% prompt & 30% non-prompt)
 - Only J/ψ tracks kept a�er reconstruc�on
 - Standard track and event selec�ons applied

Neural network (NN):
 - Architecture: Deep Residual NN (8 layers, 256 nodes)
 - Activation function: ReLU 
 - Loss: binary or categorical crossentropy with class weights
 - Regularization: L1 and L2, 10% Dropout
 - Optimizer:  Adam (Learning rate adjustment, early stopping)
 - Training/Validation/Test split: 75%/15%/10%

Observables used as features in the model: 
Track: DCAxy, DCAz, σ(DCAxy), σ(DCAz), rel. pT, η, φ,
           position in x, y and z, pointing angle θ
Pair: pseudo proper decay length Lee, opening angle ωee, 
     pointing angle θee, χee²

 
ML can be applied successfully
to separate prompt and 
non-prompt contribu�ons

Analysis of the feature 
importance can be used to
improve defini�on
of classical observables

ML can be used as a powerful
prefilter in the dielectron 
analysis to reject non-prompt
contribu�ons and reduce 
the combinatorial background

The upgraded ITS in Run 3 
with its improved vertex 
poin�ng resolu�on will
further improve the 
topological separa�on [6] 

Next step: A more sophis�cated simula�on of Pb−Pb collisions 
including open heavy-flavor background and injected thermal 
radia�on needed to fully test the poten�al of this approach


