Accelerating the search for mass bumps using the Data-Directed Paradigm

Jean-François Arguin Georges Azuelos Émile Baril Fannie Bilodeau Ali El Moussaouy Muhammad Usman Bruna Pascual

Université f de Montréal Shikma Bressler Etienne Dreyer Nilotpal Kakati Amit Shkuri

Samuel Calvet Julien Noce Donini Eva Mayer

מרון ושמנו ו^במדוו

6th Inter-experiment Machine Learning Workshop

Jan 29 - Feb 2, 2024

[Introduction](#page-1-0)

[Introduction](#page-1-0)

Motivation

What? \rightarrow Train a neural network to identify mass bumps in real data without the need of simulation or analytical fit to estimate the background

- \bullet Rapidly scan many different regions of the observable-space
- Ω Complementary to the standard analysis approach
- Why? \rightarrow Exploit the discovery potential of the data
	- \bullet Impossible to cover all possible searches with the traditional analysis
	- \bullet Many possible resonances in unexplored final states

Existing searches for two-body resonances[1]

[1] J. H. Kim et al., [J. High Energ. Phys.](https://doi.org/10.1007/JHEP04(2020)030) 2020, 30 (2020), arXiv:1907, 06659 [hep-ph]

• The Data Directed Paradigm (DDP) is a search strategy to efficiently identify regions of interest in the data. It requires two ingredients:

 \bullet Proof of concept performed for symmetries^[2] and bump searches^[3]

^[2] S. Volkovich et al., [Eur. Phys. J. C](https://doi.org/10.1140/epjc/s10052-022-10215-1) 82, 265 (2022), arXiv:[2107.11573 \[hep-ex\]](https://arxiv.org/abs/2107.11573)

^[3] M. Birman et al., [Eur. Phys. J. C](https://doi.org/10.1140/epjc/s10052-022-10454-2) 82, 508 (2022), arXiv:[2203.07529 \[hep-ph\]](https://arxiv.org/abs/2203.07529)

- **◆** Bump search performed with a network mapping invariant mass distribution to statistical significance
	- \bullet Input: vector of bin entries from invariant mass histogram
	- **O** Target: vector of statistical significance Z from likelihood-ratio test
	- Representative of an ideal analysis without modelling uncertainties

- \bullet Multiple combinations of objects at the LHC
- \bullet Selections on variables such as H_T , E_{Tmiss} , leading object p_T , etc

[Neural network and synthetic data generation](#page-5-0)

Implementation

\bullet Architecture:

- � Use of 1D convolution layers followed by a dense layer
- � Intuitive and agnostic to the number of bins in the histogram

Synthetic data generation

\bullet Data generation workflow:

1. Obtain background shapes

\bullet Analytical functions

$$
\begin{aligned} be^{-ax}, \ \ ax + b, \ \ \frac{1}{ax} + b, \ \ \frac{1}{ax^2} + b, \ \ \frac{1}{a x^3} + b, \\ \frac{1}{ax^4} + b, \ \ a \, (x-x_2)^2 + y_2, \ \ -a \cdot \ln{(x)} + b, \\ (y_1-y_2)\cos{(a \, (x-b))} + y_2, \ \ \cosh{(a \, (x-x_2))} + \end{aligned}
$$

 \bullet Fits to simulation data

2. Inject signal

- \odot Select background
- \odot Generate Gaussian signal
- \bullet Combine both into observed histogram
- \bullet Poisson fluctuate the histogram
- \bullet Calculate true significance with likelihood-ratio test

\odot Training data:

- \bullet Histograms with 30 to 100 bins
- \bullet Broad dynamic range, from 10 to 100k entries per bin
- \bullet Signals injected from broad significance range, from 1 to 20 σ

Bruna Pascual **[Accelerating the search for mass bumps using the Data-Directed Paradigm](#page-0-0) 6/15** 5/15

Dark Machines sample description

\bullet Using the Dark Machines dataset^[4]

- \bullet Designed to test anomaly detection techniques
- **●** Contains all of the highest cross-section processes at the LHC
- **◆** Generation with Madgraph and Pythia, including fast detector simulation using Delphes
- � Events divided into signal regions/channels e.g. channel 3, which is more inclusive with cuts on E_{Tmiss} > 100 GeV and H_{T} ≥ 600 GeV
- \bullet Dataset equivalent to 10 fb⁻¹

^[4] T. Aarrestad et al., [SciPost Phys.](https://doi.org/10.21468/SciPostPhys.12.1.043) 12, 043 (2022), arXiv:[2105.14027 \[hep-ph\]](https://arxiv.org/abs/2105.14027)

- **O** Consider all possible combinations of objects and selections
	- \bullet With 0 to 4 objects per type
	- \bullet Additional kinematic cuts:
		- $E_{\text{7misc}} > 200,500$ GeV; leading object $p_{\text{T}} > 100,200,400$ GeV, ...
- \odot Split the sub-dataset according to jet multiplicity
	- \bullet 0 jet, 1 jet, 2 jets, ..., > 6 jets (depends on the available stat)
	- \bullet Should allow to improve S/B
	- \bullet Help reducing look-elsewhere effect (since bump should appear at the same place in neighboring jet multiplicities)
- \bullet Build variables from available objects
	- \bullet Mass distributions of the objects and their combinations
	- � Transverse mass distributions including *ETmiss*
	- \odot For jets, use only the 4 leading jets using b-tagging information
- \bullet Find the maximum of the histogram and start from there

 $\geq 1\mu + 3j + E_{\text{Tmiss}} > 200 \text{ GeV}$ + 0*e*, 0γ, 0*T*, 0*Z*, 0*Wh*, 0*HM*

 $\leq 1W + 1Z + 3i + p_T(Z) > 100$ GeV + 0*e*, 0γ, 0*T*, 0*HM*

� . . .

- **O** Consider all possible combinations of objects and selections
	- \bullet With 0 to 4 objects per type
	- \bullet Additional kinematic cuts:

 $E_{\text{7misc}} > 200,500$ GeV; leading object $p_{\text{T}} > 100,200,400$ GeV, ...

- **●** Split the sub-dataset according to jet multiplicity
	- \bullet 0 jet, 1 jet, 2 jets, ..., > 6 jets (depends on the available stat)
	- Should allow to improve S/B
	- � Help reducing look-elsewhere effect (since bump should appear at the same place in neighboring jet multiplicities)
- \bullet Build variables from available objects
	- \odot Mass distributions of the objects and their combinations
	- � Transverse mass distributions including *ETmiss*
	- \odot For jets, use only the 4 leading jets using b-tagging information
- \bullet Find the maximum of the histogram and start from there

 $\geq 1\mu + 3j + E_{\text{Tmiss}} > 200 \text{ GeV}$ + 0*e*, 0γ, 0*T*, 0*Z*, 0*Wh*, 0*HM*

 $\leq 1W + 1Z + 3i + p_T(Z) > 100$ GeV + 0*e*, 0γ, 0*T*, 0*HM*

� . . .

- **O** Consider all possible combinations of objects and selections
	- \bullet With 0 to 4 objects per type
	- \bullet Additional kinematic cuts:

 $E_{\text{7misc}} > 200,500$ GeV; leading object $p_{\text{T}} > 100,200,400$ GeV, ...

- **●** Split the sub-dataset according to jet multiplicity
	- \bullet 0 jet, 1 jet, 2 jets, ..., > 6 jets (depends on the available stat)
	- Should allow to improve S/B
	- � Help reducing look-elsewhere effect (since bump should appear at the same place in neighboring jet multiplicities)
- \odot Build variables from available objects
	- \bullet Mass distributions of the objects and their combinations
	- � Transverse mass distributions including *ETmiss*
	- \bullet For jets, use only the 4 leading jets using b-tagging information
- \bullet Find the maximum of the histogram and start from there

 $\geq 1\mu + 3j + E_{\text{Tmiss}} > 200 \text{ GeV}$ + 0*e*, 0γ, 0*T*, 0*Z*, 0*Wh*, 0*HM* $\|$ *i*li $m(u_i)$, $m(u_i)$ _{*ETmiss}*), ...</sub> $\left| \frac{1}{2} \right|$ *m*(μ *j*₂), *m*(μ *j*₂ E_{zmin}) | . . .

 $\leq 1W + 1Z + 3i + p_{\text{T}}(Z) > 100 \text{ GeV}$ + 0*e*, 0γ, 0*T*, 0*HM* | *^m*(*Wh*, *^j*¹), *^m*(*Wh*, *^j*¹ , *^ETmiss*)... | *^m*(*j*¹ *^j*2), *^m*(*j*¹ *^j*2, *^ETmiss*)... $\|$. $\|$

 \mathbf{S} . . .

- **O** Consider all possible combinations of objects and selections
	- \bullet With 0 to 4 objects per type
	- \bullet Additional kinematic cuts:

 $E_{\text{7misc}} > 200,500$ GeV; leading object $p_{\text{T}} > 100,200,400$ GeV, ...

- **●** Split the sub-dataset according to jet multiplicity
	- \bullet 0 jet, 1 jet, 2 jets, ..., > 6 jets (depends on the available stat)
	- Should allow to improve S/B
	- � Help reducing look-elsewhere effect (since bump should appear at the same place in neighboring jet multiplicities)
- \odot Build variables from available objects
	- \bullet Mass distributions of the objects and their combinations
	- � Transverse mass distributions including *ETmiss*
	- \bullet For jets, use only the 4 leading jets using b-tagging information
- \bullet Find the maximum of the histogram and start from there

 $\geq 1\mu + 3j + E_{\text{Tmiss}} > 200 \text{ GeV}$ + 0*e*, 0γ, 0*T*, 0*Z*, 0*Wh*, 0*HM* $\|$ *i*li $m(u_i)$, $m(u_i)$ _{*ETmiss}*), ...</sub> $\left| \frac{1}{2} \right|$ *m*(μ *j*₂), *m*(μ *j*₂ E_{zmin})

[a]

 $\leq 1W + 1Z + 3i + p_{\text{T}}(Z) > 100 \text{ GeV}$ + 0*e*, 0γ, 0*T*, 0*HM* | *^m*(*Wh*, *^j*¹), *^m*(*Wh*, *^j*¹ , *^ETmiss*)... | *^m*(*j*¹ *^j*2), *^m*(*j*¹ *^j*2, *^ETmiss*)... $\| \cdot \| \cdot \|_{\infty}$.

 \mathbf{S} . . .

Total of 30 000 mass histograms

Processing and calibration

- **O** In real data, signal width determined by detector resolution
	- Ω Different for different final states and/or mass
	- � Narrow signal should produce a bump in few bins
- \odot Rebin histogram to reflect the detector resolution we would see in actual experimental data
	- \bullet *e*, μ , γ : Delphes Card formulas, depends on p_T and η
	- � jets: ATLAS report on jet resolution, depends on *p^T*

larger for small masses

- � *HM*/*T*/*Wh* accounts for 3/3/2 jets
- \bullet Using $p_T \approx m/2$ approximation

Binning reflects this with larger bin width when resolution is smaller

Dark Machines datasets

\bullet Background-only datasets:

- \bullet Obtain shapes to be included in the training sample
- \bullet Assess false positive rate

D BSM signal datasets:

- \bullet Simulated signal data added on top of the backgrounds
- \bullet Test the network in a more realistic scenario
- � Different levels of difficulty (e.g. cross-section, mass values, etc)

Some of the new physics models we have available include:

- Q RPV stop $\rightarrow b\ell$
- Q $W' \rightarrow WZ \rightarrow \ell \nu qq$, *qqvv*
- Q $LQ \rightarrow$ *bebµ*, *bebe*, *tvtv*
- Q $Z' \rightarrow 3l$

[Performance and finding BSM signals](#page-15-0)

Performance over synthetic data

- **●** Performance quantified in terms of the difference between predicted and true maximum significance
	- � *Z max true* : maximal significance calculated via the likelihood ratio test
	- � *Z max pred*: maximal predicted significance
- � Majority of entries should have *Z max pred* − *Z max true* close to 0 with the smallest variance possible
- \odot Non-zero significance for background-only histograms
	- Due to look-elsewhere-effect
	- \odot Could artificially bias the performance at low significance

[Performance and finding BSM signals](#page-15-0)

Performance on the testing sample

 \bullet Trained model accurately predicts maximum significance with no bias and a variance of \pm 0.64

♦ Excellent discriminating performance of signal and background with an AUC of 0.900

Performance stability

- \bullet Good agreement between Z_{pred}^{max} and Z_{true}^{max} is \textsf{stable}
	- � For all *Z max true*
	- O Over all mass range
	- \bullet For all dynamic ranges
	- \bullet For linear combinations of the functions

O Training with fixed signal width has increased bias as signal width increases

- **◆** Same behaviour regardless of number of bins and dynamic range
- � Accurate calibration takes time (and the DDP should work fast)
- Room for improvement, yet well defined behaviour

Finding BSM signals

\odot Promising results when finding the Higgs bump

 \bullet Data sampled from the ATLAS plot^[5] using a digitizer

- \bullet Predicted resonance at the correct mass
- � Predicted significance of 4.6σ whereas the ATLAS significance is 3.7σ

^[5] ATLAS Collaboration, [Physics Letters B](https://doi.org/10.1016/j.physletb.2012.08.020) 716, 1–29 (2012), arXiv:[1207.7214 \[hep-ex\]](https://arxiv.org/abs/1207.7214)

Finding BSM signals

● Tested over simulated BSM signals added to the Dark Machines background

 Q RPV stop $\rightarrow b\ell$

 $Q W' \rightarrow WZ$

� Successfully finds an excess at the expected mass of the stop at 1 TeV

- � Successfully finds bump for W' (with a boosted Z in the final state)
- \bullet Other signals tested and successfully found include *LQ* \to *beb* μ *, bebe* and *Z'* \to *3* ℓ
- **False-positive rate of 0.1%** when tested over background-only sample

[Conclusion](#page-21-0)

\bullet Data directed paradigm bump search to scan unexplored final states in search for resonances

- � Target smoothly falling invariant mass spectra across a variety of final states
- � Exploit full potential of data without the need of simulation or analytical fit

\odot Network implementation and performance

- � Using Dark Machines datasets with highest cross-section processes at the LHC
- \bullet Produce mass histograms with binning that reflects detector resolution
- � Successfully finds Higgs bump and BSM signals on top of the Dark Machines background, such as RPV stop and W'

\odot Future developements

- � Application to real experimental data, focusing on Run 2
- Ω Use full MC simulation data with basic selections
- \odot First iteration using single-lepton trigger and same objects
- **◆** Eventually adding more objects, such as large-R jets

[Appendix](#page-23-0)

Calculation of target significance

For each bin *i*, we perform a hypothesis test and obtain a significance value *zⁱ* (see [arXiv:1007.1727](https://arxiv.org/abs/1007.1727) �)

� Step 1: Define the shape of the signal *S* for which we are looking, e.g. a Gaussian centered on bin *i* \bullet We are currently using the mass values on the x-axis

$$
s_i = \int_{\text{bini}} f(x; x_0, \sigma) \, dx \approx f(x; x_0, \sigma) \Delta x
$$

$$
\begin{cases} x_0 = \text{center of bin } i \\ \sigma = \text{width of bin } i \times \text{given number of bins} \end{cases}
$$

- \bullet Step 2: Obtain the maximum likelihood estimator $\hat{\mu}$ for this signal *S*
	- \bullet Expected value is $N_{\text{exp}} = b_i + \mu s_i$

$$
\hat{\mu} = \arg \min - \ln[L(\mu)]
$$

$$
-\ln[L(\mu)] = -\sum_{i} N_{\text{obs}} \ln(N_{\text{exp}}) - N_{\text{exp}} + \ln\left(\frac{1}{N_{\text{obs}}!}\right)
$$

- � Observed data (*Nobs*) is the synthetic data
- \odot Unfluctuated background (b) is our null hypothesis
- \bullet Injected signal is the one added into the observed data
- \bullet Test signal is the signal that maximizes the likelihood for each bin

Calculation of target significance

For each bin *i*, we perform a hypothesis test and obtain a significance value *zⁱ* (see [arXiv:1007.1727](https://arxiv.org/abs/1007.1727) �)

● Step 3: Obtain the likelihood for both the background-only hypothesis and the maximum-likelihood estimator (MLE) signal hypothesis

$$
\bullet \quad -\ln[L(\mu=0)] \quad \rightarrow \quad \text{Background-only } (N_{\text{exp}} = b_i)
$$

- $\quad \bullet \quad -\ln[\mathfrak{L}(\mu=\hat{\mu})] \quad \rightarrow \quad \textsf{Signal} \ \textsf{MLE} \ (\mathsf{N}_\text{exp}=\mathsf{b}_i+\hat{\mu}\mathsf{s}_i)$
- Step 4: Obtain the significance using the profile likelihood ratio test

If $\hat{\mu} > 0$:

$$
z_i = \sqrt{q_0} \quad \text{with} \quad q_0 = -2 \ln \left[\frac{L(0)}{L(\hat{\mu})} \right]
$$

If $\hat{\mu} < 0$:

$$
z_i = -\sqrt{-q_0} \quad \text{with} \quad q_0 = \left\{ \begin{array}{l} -2 \ln \left[\frac{L(\hat{\mu})}{L(0)} \right], \text{if two-sided} \\ 0, \text{otherwise} \end{array} \right.
$$

� Observed data (*Nobs*) is the synthetic data

- \odot Unfluctuated background (b) is our null hypothesis
- \bullet Injected signal is the one added into the observed data
- \bullet Test signal is the signal that maximizes the likelihood for each bin

Background functions in the framework

