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Introduction

Motivation

What? → Train a neural network to identify mass bumps in real data without the need of simulation or
analytical fit to estimate the background
� Rapidly scan many different regions of the observable-space
� Complementary to the standard analysis approach

Why? → Exploit the discovery potential of the data
� Impossible to cover all possible searches with the traditional analysis
� Many possible resonances in unexplored final states

Existing searches for two-body resonances[1]

[1] J. H. Kim et al., J. High Energ. Phys. 2020, 30 (2020), arXiv:1907.06659 [hep-ph]
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Introduction

Data-Directed Paradigm

� The Data Directed Paradigm (DDP) is a search strategy to efficiently identify regions of interest in the data.
It requires two ingredients:

Property of the SM
on which deviations can be searched for

+ Tool to scan the observable-space
in search for deviations

e.g. smoothly falling invariant mass e.g. NN getting statistical significance for bumps

� Proof of concept performed for symmetries[2] and bump searches[3]

[2] S. Volkovich et al., Eur. Phys. J. C 82, 265 (2022), arXiv:2107.11573 [hep-ex]
[3] M. Birman et al., Eur. Phys. J. C 82, 508 (2022), arXiv:2203.07529 [hep-ph]
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Introduction

Bump search with DDP

� Bump search performed with a network mapping invariant mass
distribution to statistical significance
� Input: vector of bin entries from invariant mass histogram
� Target: vector of statistical significance Z from likelihood-ratio test
� Representative of an ideal analysis without modelling uncertainties

� Exploit its full potential with as many final states as possible
� Multiple combinations of objects at the LHC
� Selections on variables such as HT , ETmiss , leading object pT , etc

Electron
Muon
Photon
Jet

Leptonic Z
Boosted hadronic W/Z
Boosted top
High mass jet (m > 200GeV)
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Neural network and synthetic data generation

Implementation

� Architecture:
� Use of 1D convolution layers followed by a dense layer
� Intuitive and agnostic to the number of bins in the histogram
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Neural network and synthetic data generation

Synthetic data generation

� Data generation workflow:
1. Obtain background shapes
� Analytical functions

� Fits to simulation data

2. Inject signal
� Select background
� Generate Gaussian signal
� Combine both into observed histogram
� Poisson fluctuate the histogram
� Calculate true significance with likelihood-ratio test

� Training data:
� Histograms with 30 to 100 bins
� Broad dynamic range, from 10 to 100k entries per bin
� Signals injected from broad significance range, from 1 to 20σ
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Neural network and synthetic data generation

Dark Machines sample description

� Using the Dark Machines dataset[4]

� Designed to test anomaly detection techniques

� Contains all of the highest cross-section
processes at the LHC

� Generation with Madgraph and Pythia, including
fast detector simulation using Delphes

� Events divided into signal regions/channels
e.g. channel 3, which is more inclusive with cuts on

ETmiss > 100 GeV and HT ≥ 600 GeV

� Dataset equivalent to 10 fb−1

[4] T. Aarrestad et al., SciPost Phys. 12, 043 (2022), arXiv:2105.14027 [hep-ph]
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Neural network and synthetic data generation

Histogram production

� Consider all possible combinations of objects and selections
� With 0 to 4 objects per type
� Additional kinematic cuts:

ETmiss > 200, 500 GeV; leading object pT > 100, 200, 400 GeV, …

� Split the sub-dataset according to jet multiplicity
� 0 jet, 1 jet, 2 jets, ... ,≥ 6 jets (depends on the available stat)
� Should allow to improve S/B
� Help reducing look-elsewhere effect (since bump should appear

at the same place in neighboring jet multiplicities)

� Build variables from available objects
� Mass distributions of the objects and their combinations
� Transverse mass distributions including ETmiss
� For jets, use only the 4 leading jets using b-tagging information

� Find the maximum of the histogram and start from there

� 1µ + 3j + ETmiss > 200 GeV
+ 0e, 0γ, 0T, 0Z, 0Wh, 0HM

� 1W+ 1Z+ 3j + pT(Z) > 100 GeV
+ 0e, 0γ, 0T, 0HM

� . . .
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| . . .
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Total of 30 000 mass histograms
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Neural network and synthetic data generation

Processing and calibration

� In real data, signal width determined by detector resolution
� Different for different final states and/or mass
� Narrow signal should produce a bump in few bins

� Rebin histogram to reflect the detector resolution we would see in actual experimental data
� e, µ, γ: Delphes Card formulas, depends on pT and η
� jets: ATLAS report on jet resolution, depends on pT

� HM/T/Wh accounts for 3/3/2 jets
� Using pT ≈ m/2 approximation

Resolution is higher for m(4j) than m(3j), also

larger for small masses
Binning reflects this with larger bin width when

resolution is smaller
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Neural network and synthetic data generation

Dark Machines datasets

� Background-only datasets:
� Obtain shapes to be included in the training sample
� Assess false positive rate

� BSM signal datasets:
� Simulated signal data added on top of the backgrounds
� Test the network in a more realistic scenario
� Different levels of difficulty (e.g. cross-section, mass values, etc)

Some of the new physics models we have available include:

� RPV stop→ b`
� W′ → WZ → `νqq, qqνν
� LQ → bebµ, bebe, tνtν
� Z′ → 3l
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Performance and finding BSM signals

Performance over synthetic data

� Performance quantified in terms of the difference between
predicted and true maximum significance
� Zmaxtrue : maximal significance calculated via the likelihood ratio test
� Zmaxpred : maximal predicted significance

� Majority of entries should have Zmaxpred − Zmaxtrue close to 0 with
the smallest variance possible

� Non-zero significance for background-only histograms
� Due to look-elsewhere-effect
� Could artificially bias the performance at low significance
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Performance and finding BSM signals

Performance on the testing sample

� Trained model accurately predicts maximum
significance with no bias and a variance of±0.64

� Excellent discriminating performance of signal
and background with an AUC of 0.900
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Performance and finding BSM signals

Performance stability

� Good agreement between Zmaxpred and Z
max
true is stable

� For all Zmaxtrue
� Over all mass range
� For all dynamic ranges
� For linear combinations of the functions

� Training with fixed signal width has increased bias as signal
width increases
� Same behaviour regardless of number of bins and dynamic range
� Accurate calibration takes time (and the DDP should work fast)
� Room for improvement, yet well defined behaviour
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Performance and finding BSM signals

Finding BSM signals

� Promising results when finding the Higgs bump
� Data sampled from the ATLAS plot[5] using a digitizer

� Predicted resonance at the correct mass
� Predicted significance of 4.6σ whereas the ATLAS significance is 3.7σ

[5] ATLAS Collaboration, Physics Letters B 716, 1–29 (2012), arXiv:1207.7214 [hep-ex]
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Performance and finding BSM signals

Finding BSM signals

� Tested over simulated BSM signals added to the Dark Machines background

� RPV stop→ b`

m(jµ) at 1µ+1b+6j Histograms with Zmaxpred ≥ 5

� Successfully finds an excess at the expected mass of the stop at 1 TeV

�W′ → WZ

m(Wh, ETmiss) at 1Wh+1j

� Successfully finds bump for W’
(with a boosted Z in the final state)

� Other signals tested and successfully found include LQ → bebµ, bebe and Z′ → 3`
� False-positive rate of 0.1% when tested over background-only sample
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Conclusion

Final remarks

� Data directed paradigm bump search to scan unexplored final states in search for resonances
� Target smoothly falling invariant mass spectra across a variety of final states
� Exploit full potential of data without the need of simulation or analytical fit

� Network implementation and performance
� Using Dark Machines datasets with highest cross-section processes at the LHC
� Produce mass histograms with binning that reflects detector resolution
� Successfully finds Higgs bump and BSM signals on top of the Dark Machines background, such as RPV stop and W’

� Future developements
� Application to real experimental data, focusing on Run 2
� Use full MC simulation data with basic selections
� First iteration using single-lepton trigger and same objects
� Eventually adding more objects, such as large-R jets
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Calculation of target significance

For each bin i, we perform a hypothesis test and obtain a significance value zi (see arXiv:1007.1727 �)

� Step 1: Define the shape of the signal S for which we are
looking, e.g. a Gaussian centered on bin i
� We are currently using the mass values on the x-axis

si =
∫

bini
f (x; xo, σ) dx ≈ f (x; xo, σ)∆x

{
xo = center of bin i

σ = width of bin i× given number of bins

� Step 2: Obtain the maximum likelihood estimator µ̂ for this
signal S
� Expected value is Nexp = bi + µsi

µ̂ = arg min − ln[L(µ)]

− ln[L(µ)] = −
∑
i

Nobs ln(Nexp)− Nexp + ln

(
1

Nobs!

)
� Observed data (Nobs) is the synthetic data
� Unfluctuated background (b) is our null hypothesis
� Injected signal is the one added into the observed

data
� Test signal is the signal that maximizes the

likelihood for each bin

https://arxiv.org/abs/1007.1727


Calculation of target significance

For each bin i, we perform a hypothesis test and obtain a significance value zi (see arXiv:1007.1727 �)

� Step 3: Obtain the likelihood for both the background-only
hypothesis and the maximum-likelihood estimator (MLE)
signal hypothesis
� − ln[L(µ = 0)] → Background-only (Nexp = bi)
� − ln[L(µ = µ̂)] → Signal MLE (Nexp = bi + µ̂si)

� Step 4: Obtain the significance using the profile likelihood
ratio test

If µ̂ ≥ 0:

zi =
√
q0 with q0 = −2 ln

[
L(0)
L(µ̂)

]
If µ̂ < 0:

zi = −
√
−q0 with q0 =

 −2 ln
[
L(µ̂)
L(0)

]
, if two-sided

0, otherwise

� Observed data (Nobs) is the synthetic data
� Unfluctuated background (b) is our null hypothesis
� Injected signal is the one added into the observed

data
� Test signal is the signal that maximizes the

likelihood for each bin

https://arxiv.org/abs/1007.1727


Background functions in the framework

ax + b def linear(x, p0, p1):

return p0 * x + p1
ae−bx def exponential(x, p0, p1):

return p0 * np.exp(-p1 * x)

1
ax + b def one_over_x(x, p0, p1):

return 1/(p0*x) + p1
a(x − xmax)2 + ymin def parabola_half(x, p0, p1, x2, y2):

return p0*(x - x2)***2 + y2

1
ax2 + b def one_over_x_squared(x, p0, p1):

return 1/(p0*x***2) + p1

∆y cos[a(x − b)] + ymax def cos_quarter(x, p0, p1, y1, y2):

return (y1 - y2)*np.cos(p0*(x - p1)) + y1

1
ax3 + b def one_over_x_cubed(x, p0, p1):

return 1/(p0*x***3) + p1

−a ln(x) + b def ln_negative(x, p0, p1):

return -p0*np.log(x) + p1

1
ax4 + b def one_over_x_to_4th(x, p0, p1):

return 1/(p0*x***4) + p1

cosh[a(x − xmax)] + b def cosh_half(x, p0, p1, x2):

return np.cosh(p0*(x - x2)) + p1

1
axn + b def one_over_x_to_nth(x,p0,p1,n):

return 1/(p0*x***n) + p1

→ where n is taken randomly from the range [0.01, 10]
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