

A Deep Generative Model for Hadronization

Jay Chan¹, Xiangyang Ju¹, Adam Kania², Ben Nachman¹, Vishnu Sangli¹, Andrzej Siodmok²

¹Lawrence Berkeley National Lab, ²Jagiellonian University

Hadronization is one of the least understood problems

- Formation of hadrons out of quarks / gluons
- In MC simulation, this is done after parton shower
- The QCD of hadronization not yet fully understood

Most common hadronization models are based on physically-inspired parametrization

Most common hadronization models are based on physically-inspired parametrization

Most common hadronization models are based on physically-inspired parametrization

HadML: Generate cluster decays with neural networks

Our tool of choice: Generative Adversarial Network (GAN)

Truth / reference

- A two-network game where one (generator) maps noise to structures and one (discriminator) classifies images as fake or real
- Allows to take observed data as reference (fit to data!)

HadML v1: proof of concept

arXiv:2203.12660

- Take e+e- collision at 91.2 GeV simulated by Herwig7 as training sample
- Focus on two-body decays of clusters to pions (the majority)

HadML v1: proof of concept

arXiv:2203.12660

- Take e+e- collision at 91.2 GeV simulated by Herwig7 as training sample
- Focus on two-body decays of clusters to pions (the majority)
- GAN model conditioned on cluster kinematics (4-momentum)

HadML v1: proof of concept

- Take e+e- collision at 91.2 GeV simulated by Herwig7 as training sample
- Focus on two-body decays of clusters to pions (the majority)
- GAN model conditioned on cluster kinematics (4-momentum)
- Discriminator sees the hadron kinematics per cluster (a pair of pions)

Distribution of hadron kinematics is well learned

arXiv:2203.12660

 Pion kinematics distributions generated by HadML v1 (Herwig clusters + HadML cluster decays) compared with pure Herwig7

Problems with HadML v1

- The GAN model is fit to *Herwig7 simulation*
 - Discriminator takes each cluster (pion pair) as inputs but in real data all clusters are mixed together (we don't know which pions are paired together)
- All clusters have two-body decays
- All clusters decay to only pions

Problems with HadML v1

- clusters are mixed together (we don't know which pions are paired together)
- All clusters have two-body decays
- All clusters decay to only pions

Problems with HadML v1

- All clusters have two-body decays
- All clusters decay to only pions

Cluster \rightarrow HadML v3 $\rightarrow \{\pi^0\pi^0, \kappa^0\kappa^0, ...$

→ $\{\pi^{0}\pi^{0}, \kappa^{0}\kappa^{0}, ...\}$ HadML v3 adds hadron type into the generation arXiv:2312.08453

HadML v2: fitting GAN to data

• "Data" as in H7 simulation without cluster information

arXiv:2305.17169

HadML v2: fitting GAN to data

- "Data" as in H7 simulation *without* cluster information
- Discriminator sees all hadrons in each event

A deep set-based discriminator

arXiv:2305.17169

- Discriminator is a deep set model
- Invariant under permutation of hadrons

Performance tested on independent datasets

arXiv:2305.17169

- Fit to two datasets with different cluster fragmentation settings (default and variation)
- The GAN models are able to adapt to different data distributions

HadML v3: generate hadron types as well

arXiv:2312.08453

- Same as HadML v1 but can predict hadron types other than pion
- Discriminator sees hadron kinematics as well as hadron types (h1, h2)

Gumbel-Softmax for hadron type prediction

arXiv:2312.08453

• Gumbel-Softmax activation used to approximate the hadron type distribution (discrete)

$$y_{i} = \frac{\exp\left(\left(\log \pi_{i} + g_{i}\right)/\tau\right)}{\sum_{i} \exp\left(\left(\log \pi_{i} + g_{i}\right)/\tau\right)}$$

- g_i ~ Gumbel(0, 1)
- τ decreases from 1 \rightarrow 0.1 during training (0.1 for inference)

Distribution of hadron types is well learned

arXiv:2312.08453

Stress test with two different hadron type distributions (both perform well)

What is next for HADML?

- HadML v3 can be combined with HadML v2 to fit the hadron type distributions to data
- Go beyond two-body decays (variable number of hadrons?)
- Increase model flexibility to accommodate strings model and beyond
- Hyperparameter optimization and explore alternative generative models
- A multi-year program ahead: *stay tuned!*

Backups