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Hadronization is one of the least understood problems

Stefan Gieseke '~

Jay Chan (LBNL)

Formation of hadrons out of quarks / gluons
In MC simulation, this is done after parton

shower
The QCD of hadronization not yet fully

understood
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Most common hadronization models are based on

physically-inspired parametrization

ﬂmme Hadronization \ /CLUSTER Hadronization \

Intermediate object (string / cluster) P o
" fragmented into different hadrons

Pythia
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Most common hadronization models are based on

physically-inspired parametrization

ﬂmme Hadronization \ /CLUSTER Hadronization \

Intermediate object (string / cluster) P s
" fragmented into different hadrons

ML

e More flexible
e Can work on unbinned data

Pythia
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HadML: Generate cluster decays with neural networks

Cluster model HadML

Cluster decay

Cluster decay

Cluster decay

Cluster decay Cluster decay
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Our tool of choice: Generative Adversarial Network (GAN)

See Tony’s presentation on the

, approach with normalizing flow

Generated / GAN output

Truth / reference

Generator
<>

{real, fake}

e Atwo-network game where one (generator) maps noise to structures
and
e Allows to take observed data as reference (fit to data!)

JayChan(lBNL) e il BERKELEY LAB 7


https://indico.cern.ch/event/1297159/contributions/5729214/

HadML v1: proof of concept

arXiv:2203.12660

ris

Parton —» Cluster

e Take e+e- collision at 91.2 GeV simulated by Herwig7 as training sample
e Focus on two-body decays of clusters to pions (the majority)
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https://arxiv.org/abs/2203.12660

HadML v1: proof of concept

arXiv:2203.12660

KN
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Parton —» Cluster

e Take e+e- collision at 91.2 GeV simulated by Herwig7 as training sample
e Focus on two-body decays of clusters to pions (the majority)
e GAN model conditioned on cluster kinematics (4-momentum)
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https://arxiv.org/abs/2203.12660

HadML v1: proof of concept

arXiv:2203.12660

»
Q
o GECIIN%N —» 70,0
QA
N Ny & (6, ¢) in cluster rest frame
mns .
Parton —» Cluster Discriminator

(8, ¢) in cluster rest frame

Take e+e- collision at 91.2 GeV simulated by Herwig7 as training sample
Focus on two-body decays of clusters to pions (the majority)

GAN model conditioned on cluster kinematics (4-momentum)
Discriminator sees the hadron kinematics per cluster (a pair of pions)
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https://arxiv.org/abs/2203.12660

Distribution of hadron kinematics is well learned
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Pseudorapidity distribution of 7F and 7° multiplicity, Pert=o
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Pion kinematics distributions generated by HadML v1 (Herwig clusters + HadML cluster decays)

compared with pure Herwig7
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https://arxiv.org/abs/2203.12660

Problems with HadML v1

e The GAN model is fit to Herwig7 simulation
o Discriminator takes each cluster (pion pair) as inputs but in all
clusters are mixed together (we don’t know which pions are paired
together)
e All clusters have
e All clusters decay to only pions
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Problems with HadML v1

HadML

Cluster —» v2

e The GAN model is fit to Herwig7 simulation
o Discriminator takes each cluster (pion pair) as inputs but in all
clusters are mixed together (we don’t know which pions are paired
together)
e All clusters have
e All clusters decay to only pions

arXiv:2305.17169
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https://arxiv.org/abs/2305.17169

Problems with HadML v1

HadML

Cluster —» v2

e The GAN model is fit to Herwig7 simulation
o Discriminator takes each cluster (pion pair) as inputs but in all
clusters are mixed together (we don’t know which pions are paired
together)
e All clusters have
e All clusters decay to only pions

arXiv:2305.17169

HadML

custer -» il > . 0.1 HadML v3 adds hadron type into the generation
arXiv:2312.08453
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https://arxiv.org/abs/2305.17169
https://arxiv.org/abs/2312.08453

HadML v2: fitting GAN to data

arXiv:2305.17169
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Event Parton = Cluster —p = 770770

Parton = Cluster —» —p 77070
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Event Parton — Cluster —p C,I:‘f;er —» 7070

Parton =9 Cluster —p

Cluster
Parton = Cluster —p | — 77070

e “Data” as in H7 simulation without cluster information
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https://arxiv.org/abs/2305.17169

HadML v2: fitting GAN to data

arXiv:2305.17169

Parton = Cluster —p

Event Parton —» Cluster —p |
(E, px, Py, pz) in lab frame

Parton = Cluster —p

Discriminator

Parton =9 Cluster —p

E, px, Py, pPz) in lab frame
Event Parton — Cluster —p  |iesiid (E. Px, Py, P2) |

——
Cluster

Frag

Parton = Cluster —p

e “Data” as in H7 simulation without cluster information
e Discriminator sees all hadrons in each event
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https://arxiv.org/abs/2305.17169

A deep set-based discriminator

arXiv:2305.17169

7T0 (E’ pX’ py’ pz)

P
70 (E, px, Py, Pz) - @ {fake, real}
P
70 (E’ Px, pya pZ)
® is a deep set model

e |nvariant under permutation of hadrons
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https://arxiv.org/abs/2305.17169

Performance tested on independent datasets

arXiv:2305.17169
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e Fit to two datasets with different cluster fragmentation settings (default and )

e The GAN models are able to adapt to different data distributions
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https://arxiv.org/abs/2305.17169

HadML v3: generate hadron types as well

arXiv:2312.08453
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Parton —» Cluster

GEG|IMYEN —» [1No + (6, 0)in cluster rest frame

Discriminator

Cluster
Frag

—» hi1h2 +(8, ¢)in cluster rest frame

e Same as HadML v1 but can predict hadron types other than pion
e Discriminator sees hadron kinematics as well as hadron types (h1, h2)
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https://arxiv.org/abs/2312.08453

Gumbel-Softmax for hadron type prediction

arXiv:2312.08453

Cluster (E, px, py, pz)

e Gumbel-Softmax activation used to approximate the hadron type distribution (discrete)

exp ((log mi + g:) /7)
>_iexp ((logm; + g;) /7)

Yi =

e gi~ Gumbel(0, 1)
e 7 decreases from 1 — 0.1 during training (0.1 for inference)
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https://arxiv.org/abs/2312.08453

Distribution of hadron types is well learned

arXiv:2312.08453
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e Stress test with two different hadron type distributions (both perform well)
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https://arxiv.org/abs/2312.08453

What is next for HADML?

e HadML v3 can be combined with HadML v2 to fit the hadron type
distributions to data

Go beyond two-body decays (variable number of hadrons?)

Increase model flexibility to accommodate strings model and beyond
Hyperparameter optimization and explore alternative generative models
A multi-year program ahead: stay tuned!
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