Deep Learning for the Rare Top Decay $t \rightarrow sW$ at the LHC

<u>Jeewon Heo</u>¹, Woojin Jang¹, Jason Lee¹, Inkyu Park¹, Youn Jung Roh¹, Ian James Watson¹, Seungjin Yang² ¹ University of Seoul, ² Kyung Hee University

Introduction

- The Cabibbo-Kobayashi-Maskawa (CKM) matrix describes the flavorchanging charged weak interaction
- Identification of a strange jet originating from top quark decays (t \rightarrow sW) is important task to achieve a direct measurement of |V_{ts}| [1, 2]
- We propose a novel deep learning model based on the Self-Attention mechanism to find the jets decaying from the t \rightarrow sW decay in the top pair production with dilepton final state

 $\setminus |V_{td}|$

 $|V_{ts}|$

 $|V_{tb}|/$

Model Training

- For the training $t\bar{t} \rightarrow sWbW$ (signal) and $t\bar{t} \rightarrow bWbW$ (background) are used \circ Targets for signal sample, t \rightarrow s parton matched events are used
- The task of the SAJA-Dilepton model is a jet-wise classification of events
 - The task is specified by using jet-wise cross-entropy loss
- Training variables
 - Jet: Momentum components, particle multiplicities, jet shape, energy sharing variable [4], b tagging information, jet charge • lepton: momentum components, flavor, charge
 - $\circ p_T^{miss}$, azimuthal angle ϕ of p_T^{miss}

0.00857 0.04110 0.999118/

Analysis Setup

- Sample generation
- Our signal process is $tt \rightarrow sWbW$, where both W bosons decay into leptons (e, μ)
- \circ Our dominant background process is $tt \rightarrow bWbW$, we also produce **Drell-Yan+jj**, **Single Top**, and **diboson** processes
- Samples are generated using MadGraph5_aMC@NLO and PYTHIA 8, followed by simulating the CMS-like detector response with Delphes 3
- Selection for Top pair production with dilepton final state events

• Electron Muon • Jet $\circ p_{T} \geq 20$ ○ p_T ≥ 20 $\circ p_{T} \geq 30$ ○ $|\eta| \le 1.442, 1.566 \le |\eta| \le 2.4$ ○ $|\eta| \le 2.4$ • $|\eta| \le 2.4$ • **Isolation > 0.12** • Isolation > 0.15 ○ ∆ R (j, l) > 0.4

- Event selection
 - \circ Two leptons with opposite charge, M_{II} > 20 GeV
 - Veto Z boson ($|M_z M_{\parallel}| > 15$ GeV), $p_T^{miss} > 40$ GeV in (ee / $\mu\mu$) channel
 - At least 2 jets, Number of b-tagged jet < 2

SAJA-Dilepton Model

 \circ Jet constituents: Momentum components of particle, difference of η and ϕ between particle and jet axis, p_T of particle relative to jet p_T , p_T perpendicular to jet axis, p_T perpendicular to jet axis, impact parameter value, charge, EM, hadronic energy

ſ	$\langle J^{(1)} \rangle$	+	$\left(L^{(1)} \right)$		$\left. \right\} \to \mathrm{Model} \to$	$(y_{t \to s}^{(1)})$	$y_{t ightarrow b}^{(1)}$	$y_{othe}^{(1)}$
	÷		$L^{(2)}_{.}$:	:	:
l	$J^{(N)}$		$\left(p_{\mathrm{T}}^{\mathrm{miss}} \right)$			$igvee y_{t ightarrow s}^{(N)}$	$y_{t ightarrow b}^{(N)}$	$y_{othe}^{(N)}$

A simple diagram of model input and output structure for an event

BDT

 \Box tt \rightarrow sWbW

 \Box tt \rightarrow bWbW

□ Z/γ → II

SingleTop

 $L(\theta) = \frac{1}{N} \sum_{i=1}^{N} (y_{t \to s}^{(j)} \log \hat{y}_{t \to s}^{(j)} + y_{t \to b}^{(j)} \log \hat{y}_{t \to b}^{(j)} + y_{other}^{(j)} \log \hat{y}_{other}^{(j)})$

Jet-wise cross-entropy loss

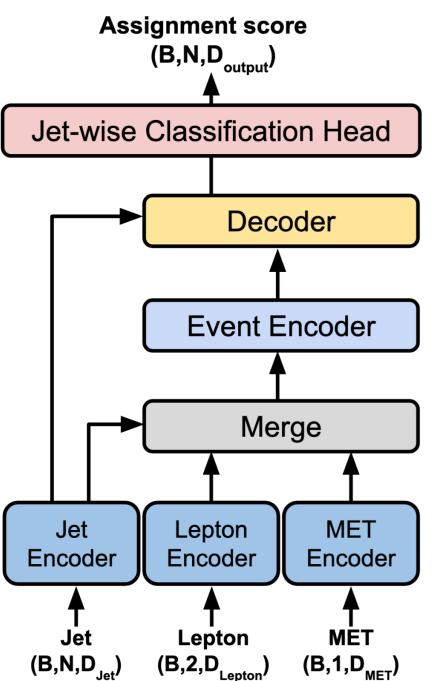
ך _{0.40}⊢ ו

0.35

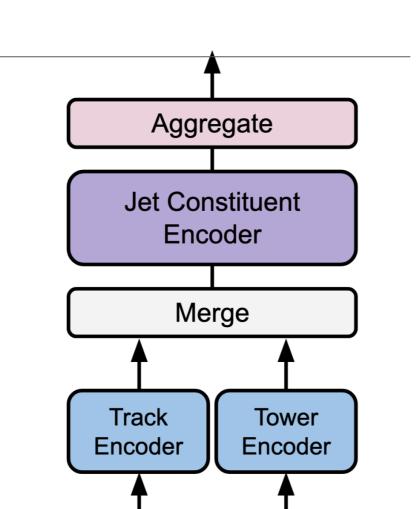
SAJA with jet constituent

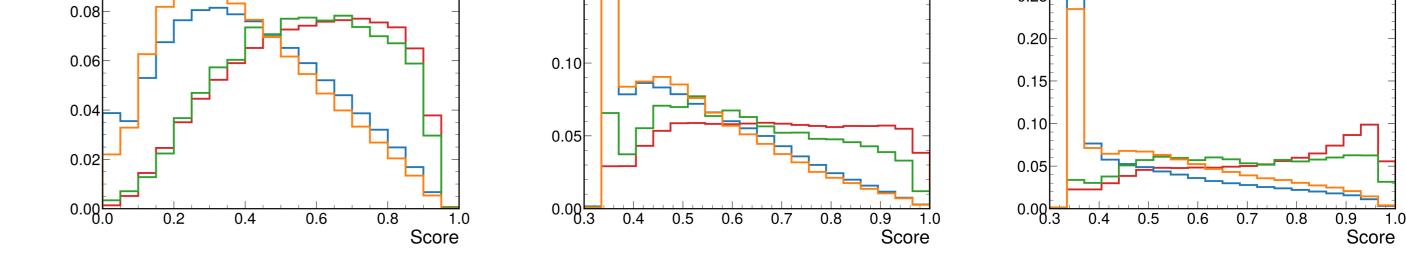
 \Box tt \rightarrow sWbW

 \Box tt \rightarrow bWbW


SingleTop

 \Box Z/ $\gamma \rightarrow \parallel$

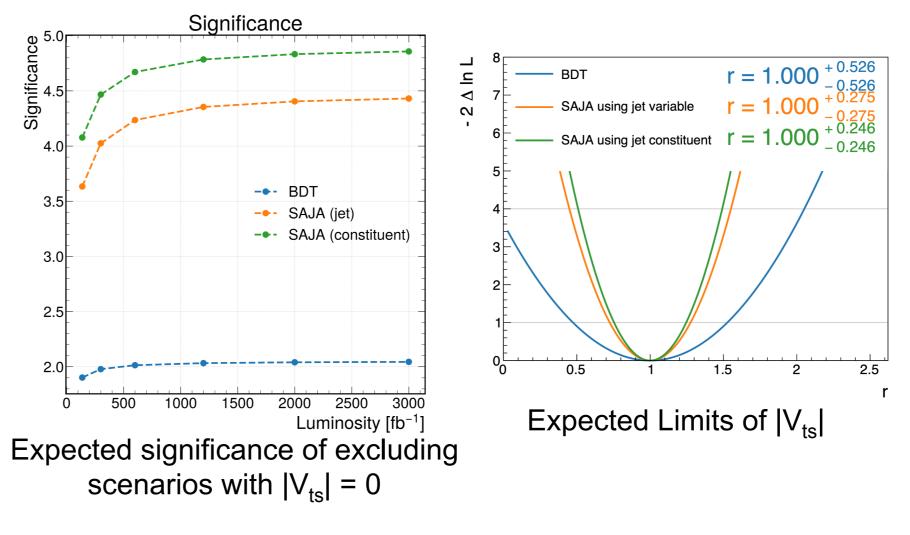

Baseline


Results

- Boosted Decision Trees (BDT) are used as a baseline model
- For the implementation of BDT, the XGBoost library is used
- BDT is trained to classify jets from $t \rightarrow sW$ decay jet-wisely
- Jet variables listed in training of SAJA-Dilepton model are used

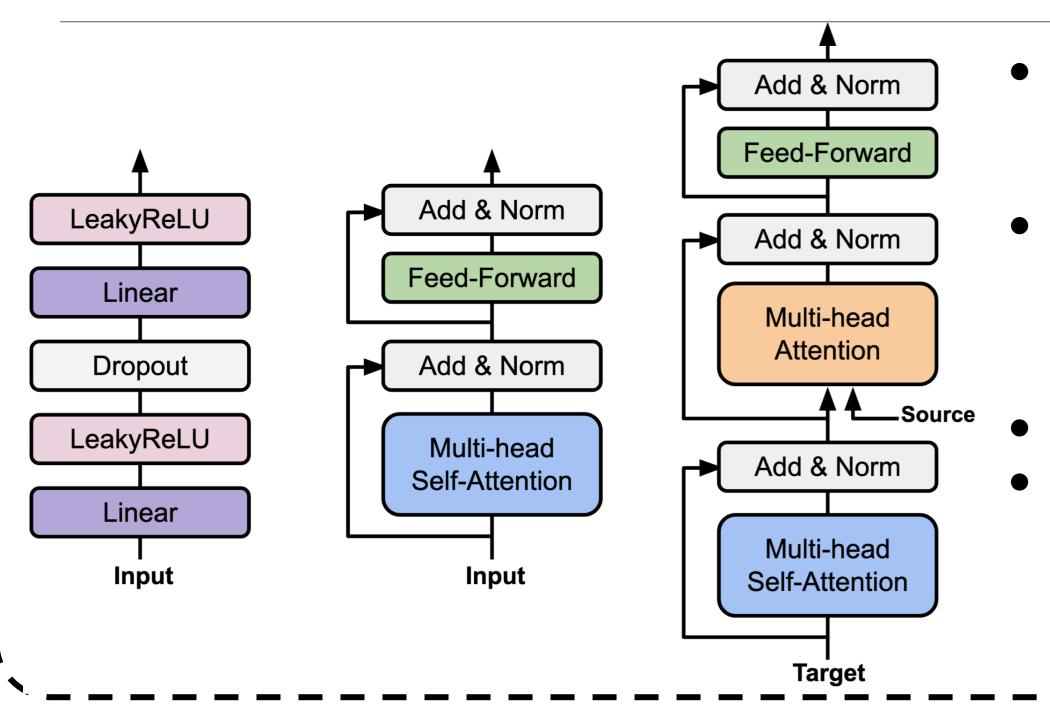
- We modified the Self-Attention for Jet Assignment (SAJA) model [3] for dilepton events
- Object encoder blocks deal with multi-modal inputs
- Information of objects that sent to the same latent space are combined in the merge block
- The event encoder takes output of merge block and calculates their relationship using self-attention mechanism
- The decoder block receives output of event encoder and jet encoder and derives role of jets in event • Jet-wise classification head outputs categorical scores for jets in events
- Jet properties can be derived from jet constituent
 - We can calculate known properties such as number of particles in jet, jet shape, and fragmentation function of jet
 - These high-level features don't capture all information from the constituent
- We propose the model that can take jet constituents
 - The graph on the right can replace jet encoder of

SAJA with jet variable


 \Box tt \rightarrow sWbW

 \Box tt \rightarrow bWbW

SingleTop


 \Box Z/ $\gamma \rightarrow II$

- We use $t \rightarrow s$ score of models to discriminate signal and backgrounds
- Score distribution is used as input to the binned likelihood fit
- Expected limits and significances are calculated with toy dataset (Asimov)
- Only MC statistics error is considered as a systematic

- **Expected significances are** obtained from Run 2 to HL-LHC luminosities with lumi projection Expected limits are calculated with **Run 2 luminosity**
- We obtained expected limits of $0.0293 < |V_{ts}| < 0.0502 @ 95\% CL$ with SAJA-Dilepton using jet constituent model

SAJA-Dilepton model

- Left: Feed-Forward block
- Object encoders are feedforward block
- Middle: Self-Attention block
 - Event encoder and jet constituent encoder are selfattention block
- **Right: Decoder block**
- In the self-attention block
- and Decoder block,
- **Dropout is employed to the** output of each sublayer

Conclusion

- We introduced the models using self-attention mechanism that can apply to various types of input objects
- We compared SAJA-Dilepton models with the baseline model and SAJA-**Dilepton models show better performance**
- In this study, we can exclude scenarios with $|V_{ts}| = 0$ up to a significance

level of ~4 σ at the LHC Run 2 luminosity, considering MC statistics only

Reference

[1] Ahmed Ali, Fernando Barreiro, and Theodota Lagouri. Prospects of measuring the CKM matrix element |Vts| at the LHC. Phys. Lett. B, 693:44– 51, 2010.

[2] Woojin Jang, Jason Sang Hun Lee, Inkyu Park, and Ian James Watson. Measuring |Vts| directly using strange-quark tagging at the LHC. J. Korean Phys. Soc., 81(5):377–385, 2022.

[3] Jason Sang Hun Lee, Inkyu Park, Ian James Watson, and Seungjin Yang. Zero-Permutation Jet-Parton Assignment using a Self-Attention Network. arXiv:2012.03542

[4] CMS. Performance of quark/gluon discrimination in 8 TeV pp data. Technical report, CERN, 2013.

6th Inter-experiment Machine Learning Workshop 28th Jan. - 2nd Feb. 2024

Jeewon Heo E-mail: jeewon.heo@cern.ch