

END-TO-END RECONSTRUCTION ALGORITHM FOR HIGHLY GRANULAR CALORIMETERS

Philipp Zehetner¹² - Jan Kieseler¹³ - Shah Rukh Qasim⁴ - Dolores Garcia¹ - Kenneth Long¹

¹CERN, ²University of Munich, ³Karlsruhe Institute of Technology, ⁴University of Zurich

Work done in context of ML4Reco

6th Inter-experimental Machine Learning Workshop

MOTIVATION

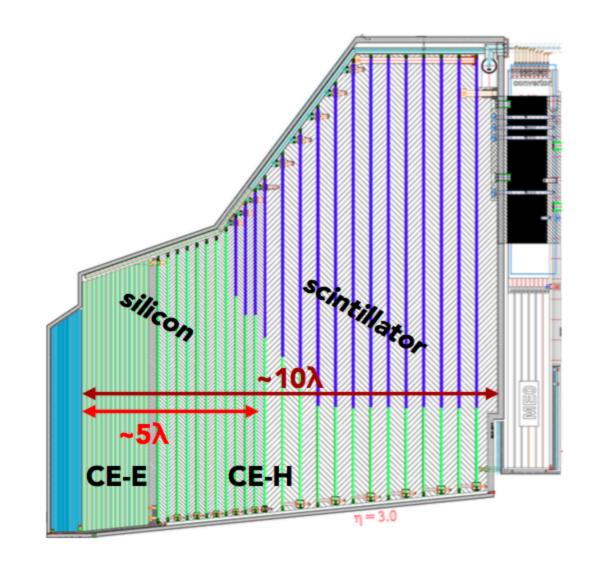
Single step reconstruction of complex events can optimally use all available information

HIGH-LUMINOSITY-LHC

- CMS will observe 200 pile-up (PU) events
- Upgrade for end-cap calorimeter
 High Granularity CALorimeter (HGCAL)
- HGCAL: 2x ~3M readout channels
- Silicon sensors and scintillators

RECONSTRUCTION GOALS

- Combine calorimeter hits with tracks
- Cluster hits to build showers
- **Regress** energy of showers
- Classify particle ID
- All of this using one **differentiable** network



https://cds.cern.ch/record/2293646/

CMS-HGCAL

METHODS

- Graph-based neural network implemented in TensorFlow
- Object Condensation Loss allowing points to represent objects
- GravNet Architecture
 A dynamic GNN that operates on point clouds

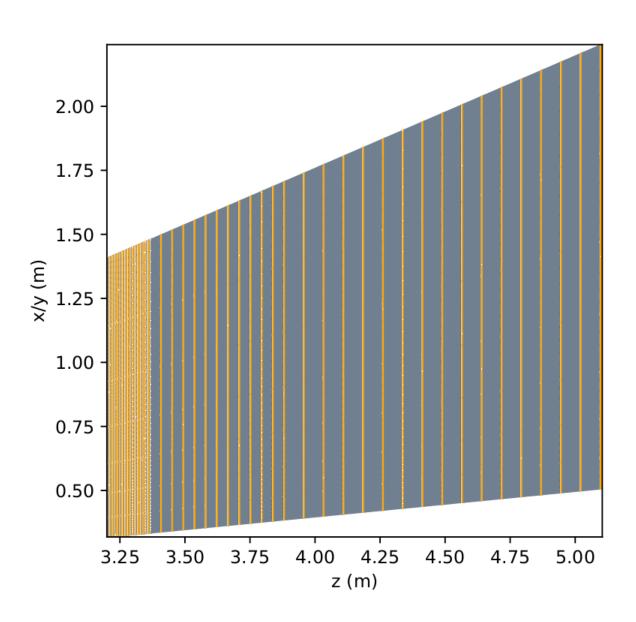
PREVIOUS WORK

- Connecting The Dots 2023
- ACAT 2022
- ACAT 2021
- End-to-End Reconstruction
- GravNet
- Object Condensation

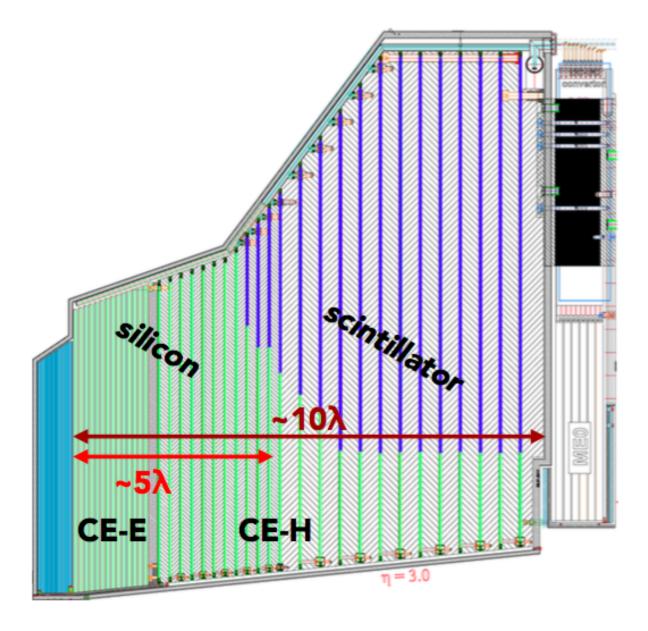
6th Inter-experimental Machine Learning Workshop

HGCAL LMU LUDWIGMAXIMILIANSUNIVERSITÄT MÜNCHEN

TOY DETECTOR



- ~50 Sampling layers with 200 μm silicon sensors as active material
- Sensors square in η and ϕ
- ~3 Million readout channels per end-cap
- Standalone simulation using Geant



- ~50 Sampling layers with 120 μm, 200 μm, 300 μm silicon and scintillators
- Heaxgonal silicon sensors
- ~3 Million readout channels per end-cap
- Simulation within CMS Software (CMSSW)

TRAINING EVENTS

Training Event with ~90 Showers

 trace 0 trace 2 trace 3 trace 6 trace 7 trace 14 trace 16 trace 17 • trace 24 trace 31

DATA SETS

Particle Showers

- Electrons, photons, charged pions, or kaons (K-long)
- 0.1 GeV < E < 200 GeV
- $1.5 < \eta < 3.0$

• Minimum bias

- Proton-proton collisions at 13 TeV
- Simulated with PYTHIA8
- Used for pile-up

Tracks

- Tracks are added for all charged particles
- Tracks are flagged as such and have the particles original smeared out energy

• Train Data

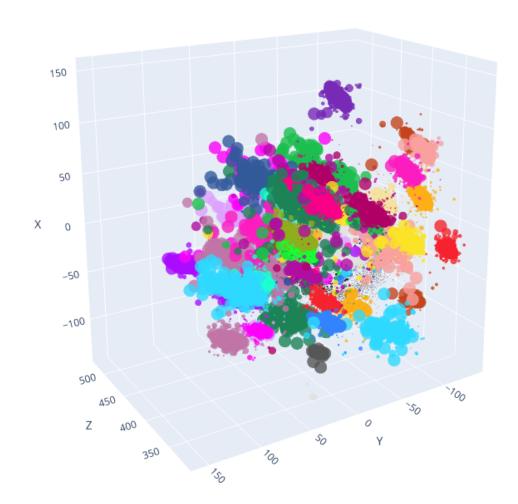
- Multiple showers + Gaussian noise
- Multiple showers + Gaussian noise + 200 PU in random 30° φ region

Test Data

- Multiple showers + Gaussian noise
- Single shower + Gaussian noise + 200 PU in full detector

OVERVIEW

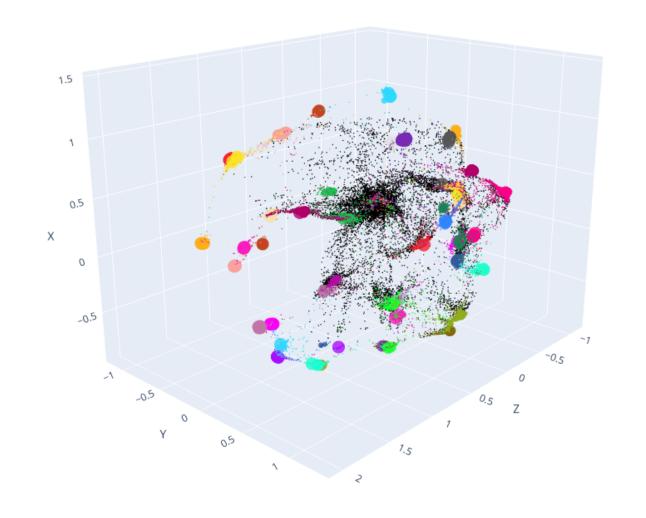
DETECTOR SPACE



CONCEPT

- Colour represents different showers
- Overlapping showers make clustering in detector space difficult
- Learn mapping into clustering space
- Learn confidence β
- β close to 1 \rightarrow hit can represent shower
- In clustering space hits from the same shower should be close
- Every shower should have at least one hit with high β (condensation point)

CLUSTER SPACE



Highest confidence eta for every shower gets assigned as condensation point, indicated by lpha

Attractive Potential

Repulsive Potential

Shower Matrix

$$q_{\alpha} = \tanh^{2}(\beta_{\alpha})$$

$$V_{\rm att} \propto q_{\alpha} \cdot |x - x_{\alpha}|^2$$

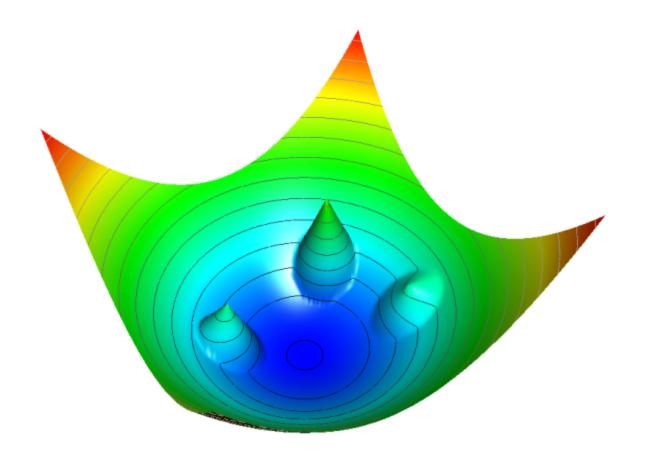
$$V_{\text{rep}} \propto q_{\alpha} \cdot \max(0, 1 - |x - x_{\alpha}|)$$

$$M_{jk} = \begin{cases} 1 & \text{hit } j \in \text{shower } k \\ 0 & \text{else} \end{cases}$$

Loss terms

$$L_{V} = \frac{1}{N} \sum_{j=1}^{N} q_{j} \sum_{k=1}^{K} \left(M_{jk} V_{att}(x_{j}) + (1 - M_{jk}) V_{rep}(x_{j}) \right)$$

$$L_{\beta} = \frac{1}{K} \sum_{k=1}^{K} \left(1 - \beta_{\alpha}^{k} \right) + \frac{1}{N_{\text{noise}}} \sum_{j \in N_{\text{noise}}} \beta_{j}$$

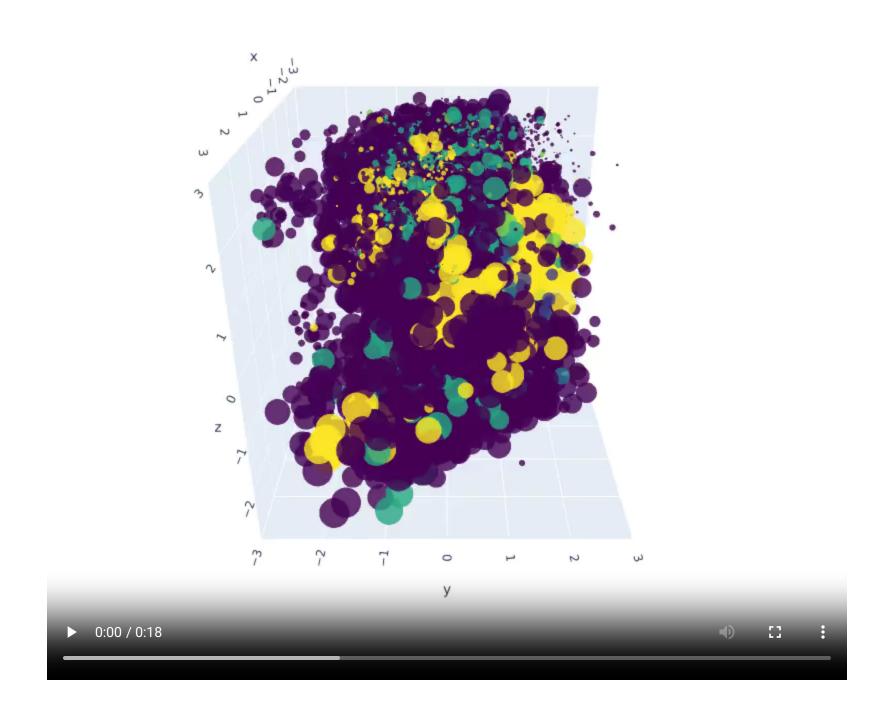


Object Condensation

Potential in cluster space seen by a single hit

- Minimum: Matching condensation point
- Local peaks: Condensation points from 3 other showers

OBJECT CONDENSATION IN TRAINING



CREATING SHOWERS

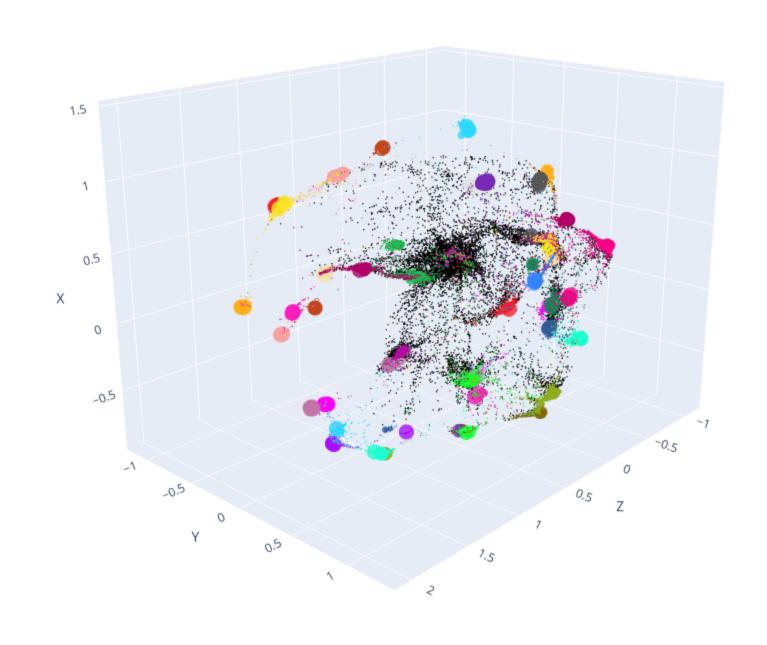
FAST CLUSTERING ALGORITHM

- 1. Sort hits by confidence β
- 2. Highest β is first condensation point
- 3. Hits within distance threshold t_d = 0.25 around β are assigned to first shower
- 4. Remove already assigned hits from list
- 5. Repeat steps 2 4 as long as highest β value is larger then threshold t_{β} =0.3
- 6. Remaining hits are classified as noise

ALTERNATIVE:

More sophisitacted clustering algorithms such as HDBSCAN

CLUSTER SPACE



Philipp Zehetner

6th Inter-experimental Machine Learning Workshop

MATCHING SHOWERS

MATCHING CONDITIONS

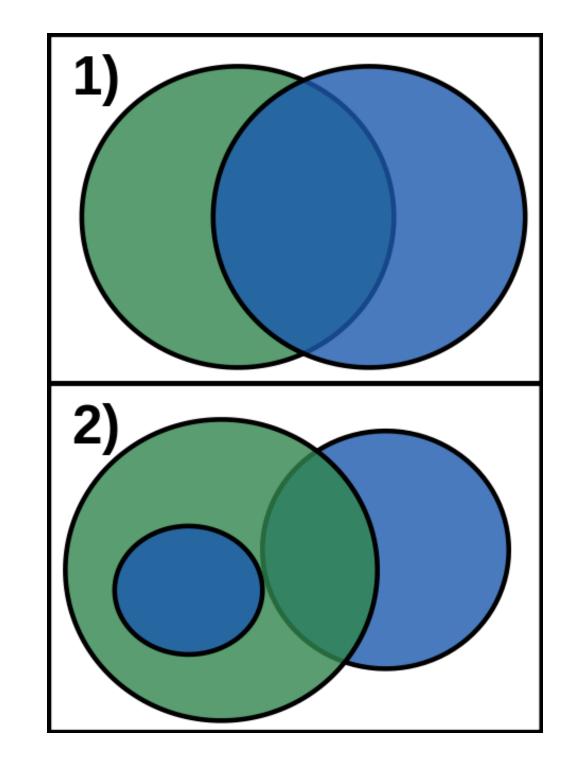
To evaluate the performance of the algorithm, reconstructed showers are matched with truth showers.

- Reconstructed showers are matched with true showers based on their energy weighted overlap.
- More precisely: The intersection over union between two showers has to be larger than 33%
- If truth shower and reconstructed shower have equal energy, this translates that at least 50% of each shower overlaps

Important:

The matching conditions influence the performance metrics, but do not change the performance of the algorithm.

A low threshold allows to find a match for nearly every shower but comes at the cost of degraded energy resolution and vice versa.



- 1) True shower and predicted shower overlap
- 2) More complicated matching scenario

DATASETS

to evaluate

CLUSTERING & ENERGY

- Single shower
 - Electrons, photons, charged pions, or kaons (K-long)
 - E = 20 GeV, 50 GeV, 100 GeV, 200 GeV
 - $\eta = 2.0$
- Random Gaussian noise
- 200 minimum bias proton-proton collisions

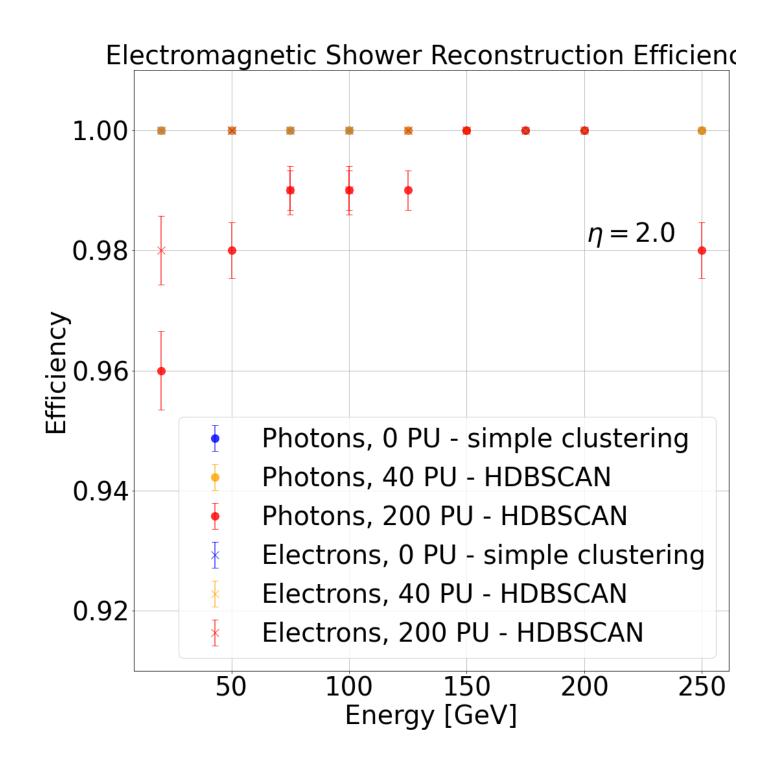
to evaluate

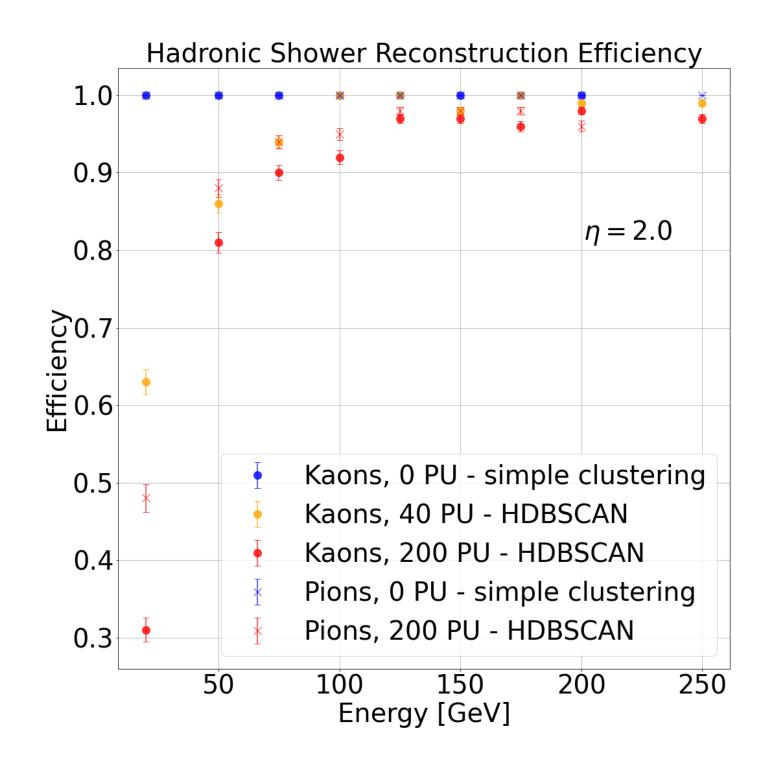
PARTICLE IDENTIFICATION

- 60-90 showers
 - Electrons, photons, charged pions, kaons (K-long)
 - 0.1 GeV ≤ E ≤ 200 GeV
 - $1.5 \le \eta \le 3.0$
- Random Gaussian noise
- 0 pile-up

LUDWIGMAXIMILIANSUNIVERSITÄT MÜNCHEN

EFFICIENCY





- Efficiency for electromagnetic showers close to perfect even in 200 PU
- Hadronic shower efficiency approaches 100% for higher energies

Philipp Zehetner

RESPONSE AND RESOLUTION

Metrics for matched showers

RESPONSE

Mean of predicted energy over true energy

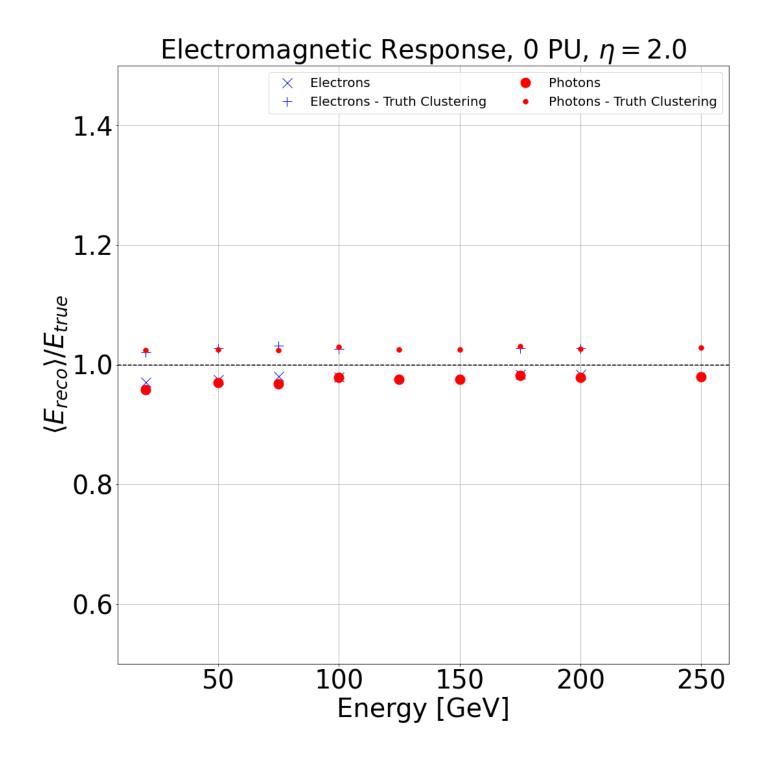
RESOLUTION

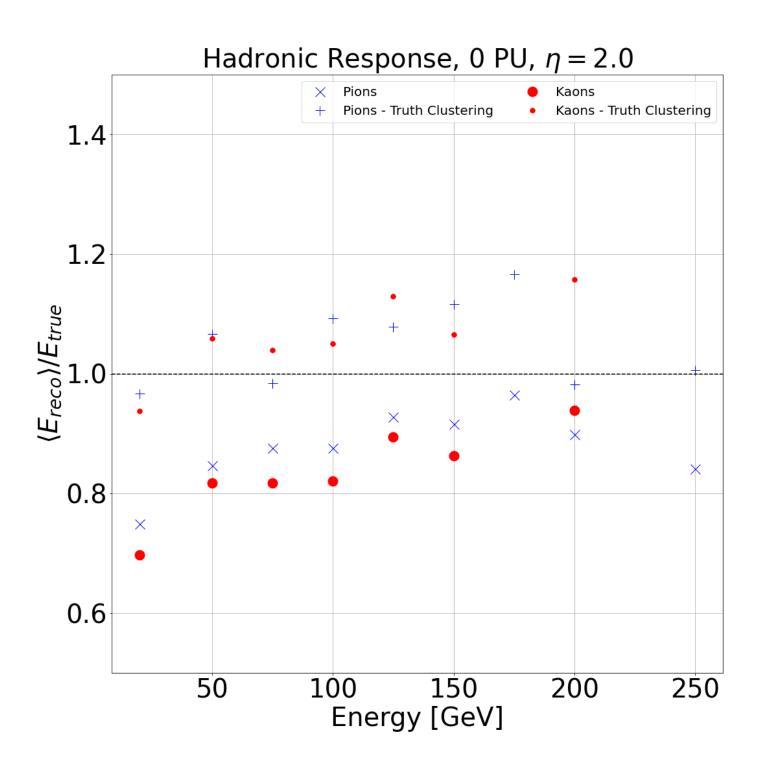
Standard deviation of predicted energy over mean of predicted energy

Baseline: Ideal Clustering

- Use truth information for clustering
- Energy is sum of all hit energies belonging to shower
- Pile-up may contaminate truth information for overlapping hits

RESPONSE - 0 PU



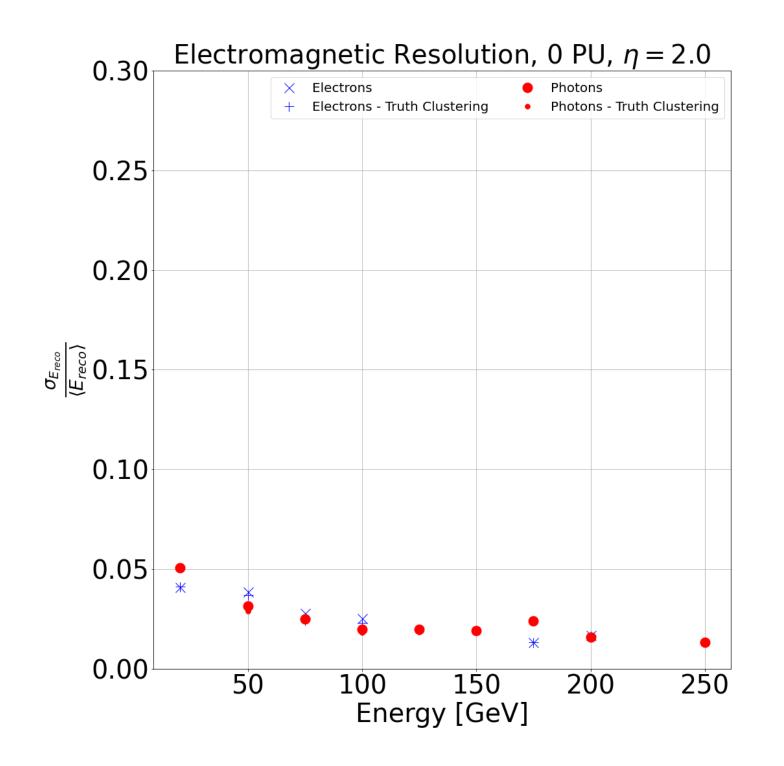


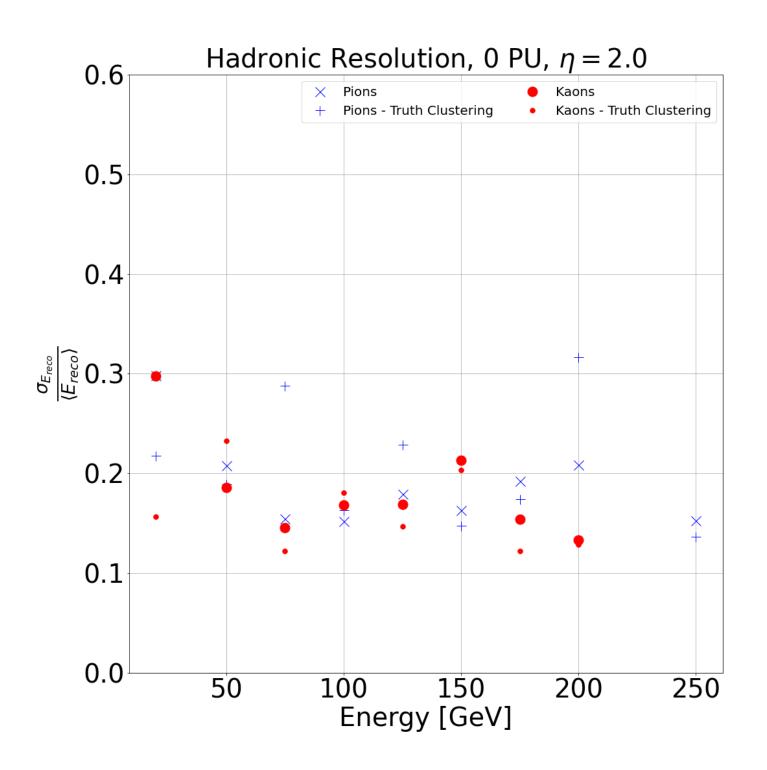
• Electromagnetic and hadronic response as close to linear as baseline

Philipp Zehetner

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

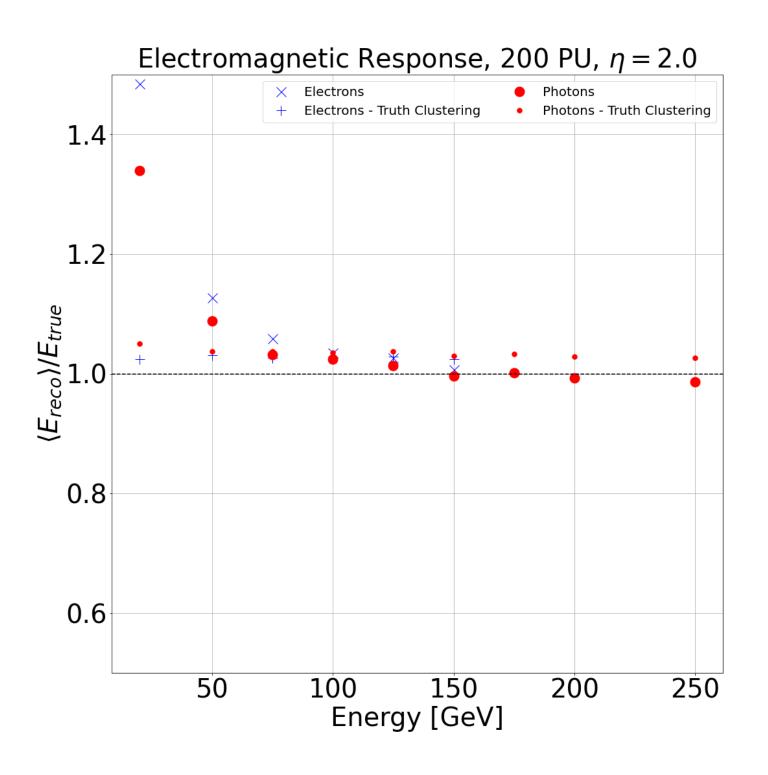
RESOLUTION - 0 PU

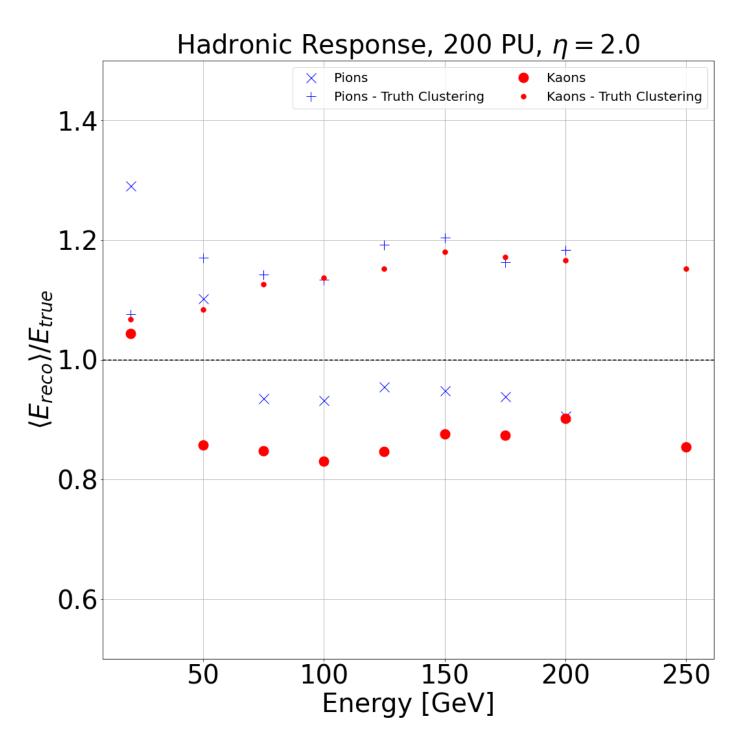




- EM: Reconstructed showers identical to baseline
- Limited by detector resolution

RESPONSE - 200PU

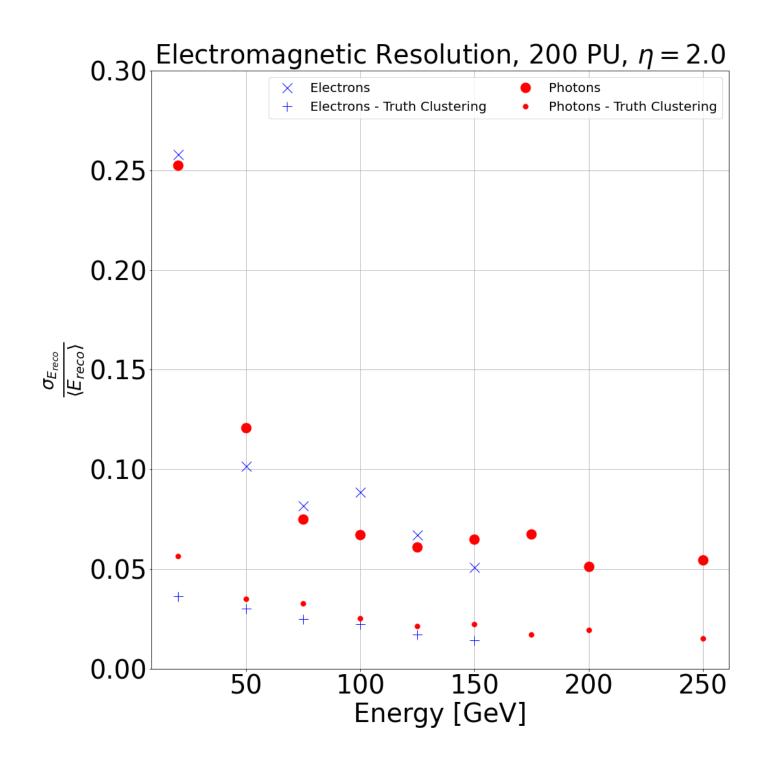


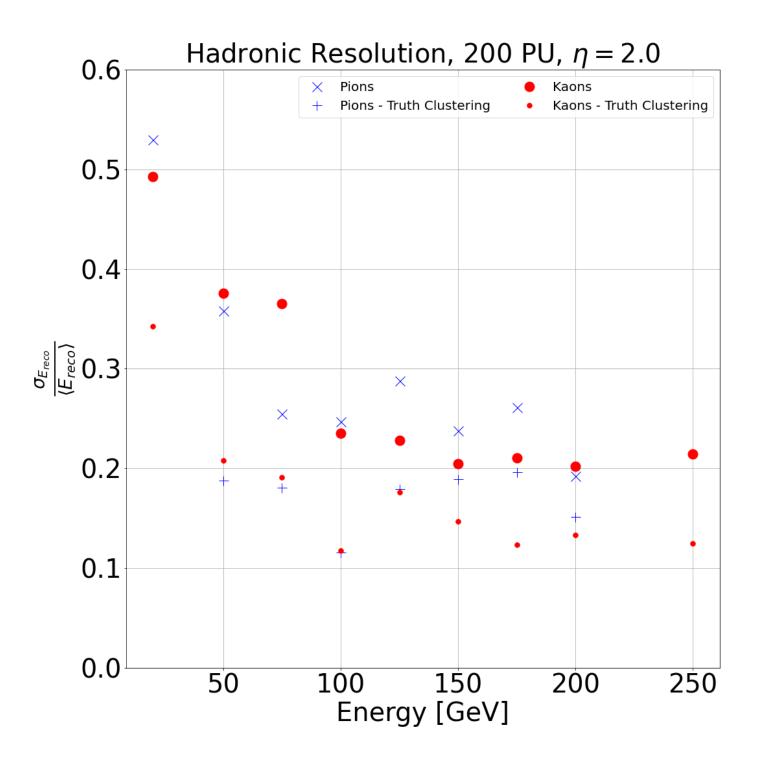


- Contamination from PU more noticable in 200 PU for energies belwo $50 \text{ GeV} (= 13 \text{ GeV} p_{\text{T}})$
- Response close to constant for higher energies

Philipp Zehetner

RESOLUTION - 200PU

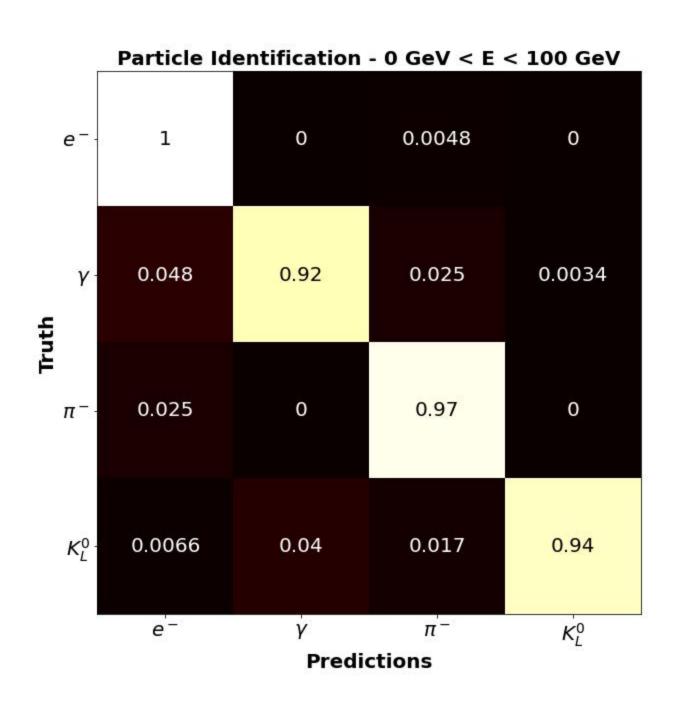


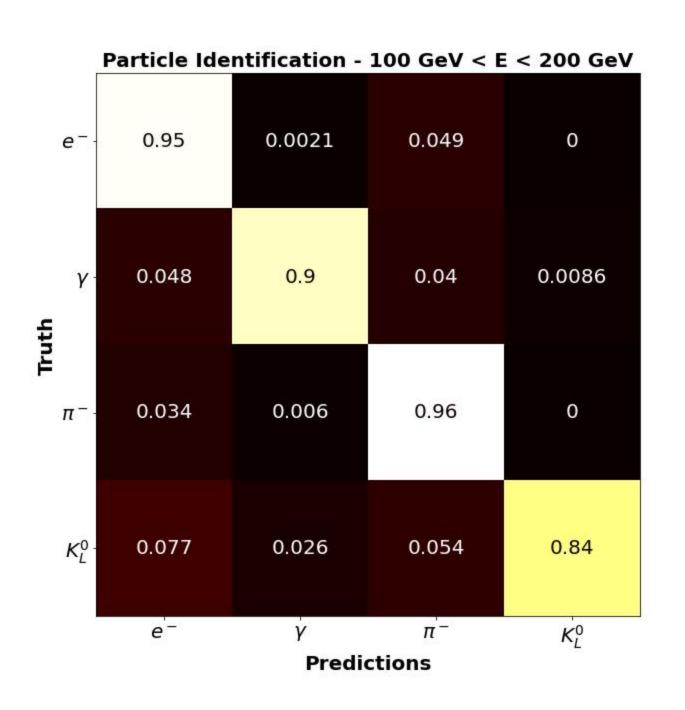


- Offset between optimal clustering and reconstruction more consisten for electromagnetic showers
- Offset generally decreases with higher energy

Philipp Zehetner

PARTICLE IDENTFICATION





Accurate particle ID for low and high energies

SUMMARY

- We are able to **efficiently** reconstruct showers within **200 Pilup**
- Learn energy correction factors for each shower to improve energy resolution
- Accurately predict Particle ID in multi-shower events
- Addition of tracks improves clustering performance
- Step towards an end-to-end differntiable particle-flow algorithm

NEXT STEPS

- Continuing to improve the network architecture
- Exploring other clustering methods
- Particle identification in pile-up events
- Train network on HGCAL simulations
- Integration in CMSSW

Hope to see you at the **poster session on Thursday**

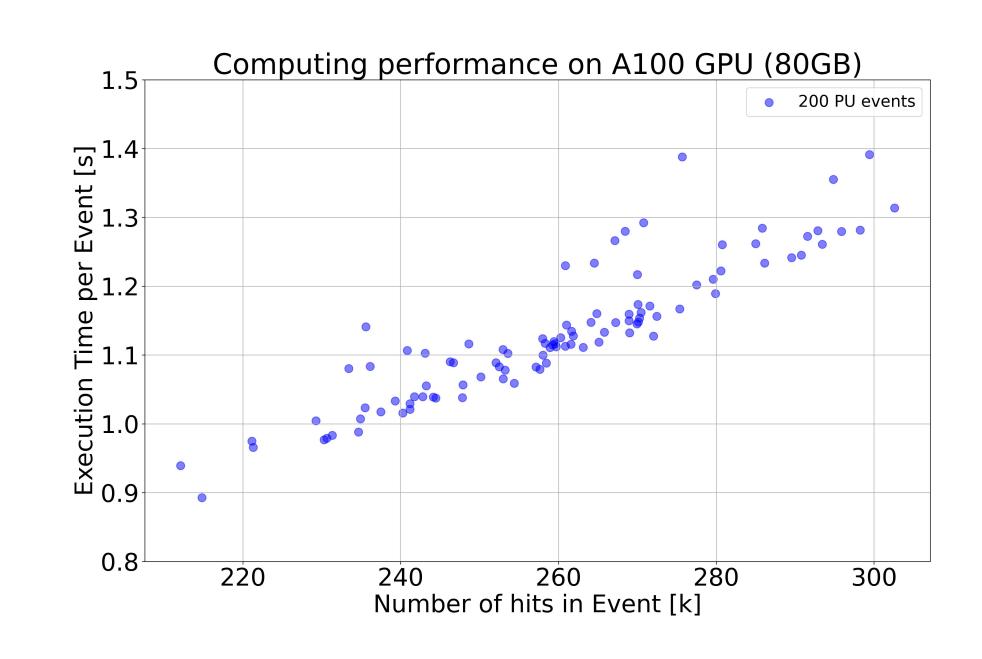
This work has been sponsored by the Wolfgang Gentner Programme of the German Federal Ministry of Education and Research (grant no. 13E18CHA)

BACKUP

COMPUTATIONAL REQUIREMENTS

Inference time for 200 PU events only including the network prediction and no clustering (as this can be done in multiple ways).

- Inference time scales linear with number of input hits
- In 200 PU events inference needs around one second per event
- We have yet to explore more options reducing inference time such as:
 - Downscaling working models
 - Aggressive noise filters or hit reduction via pre-clustering
 - Switching to modern tensorflow versions and updated drivers



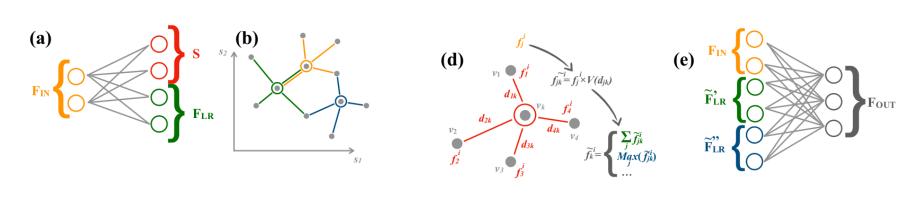
Philipp Zehetner

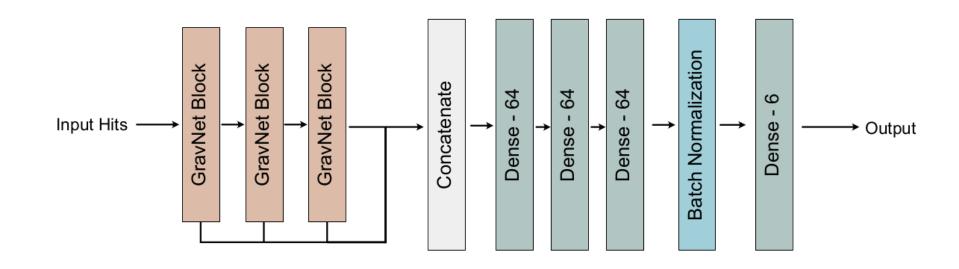
6th Inter-experimental Machine Learning Workshop **GRAVNET**

GRAVNET LAYER

- 1. Transform input features $F_{
 m in}$ via dense layer into
 - ullet transformed features $F_{
 m LR}$
 - ullet low-dimensional GravNet coordinates S
- 2. Use GravNet coordinates to build graph
 - \rightarrow connect K nearest neighbours (KNN)
- 3. Aggregate weighted $F_{
 m LR}$ over neighbours
 - Weights depend on distance between nodes
 - Aggregation is mean and max value of all neighbours
- 4. Concatenate to produce output $F_{
 m out}$

- 1. Transform and normalize inputs
- 2. Use several GravNet layers to exchange information among neighbours
- 3. Create ouputs using information from all Gravnet layers
 - Cluster coordinates
 - Confidence β
 - Energy correction factor
 - Particle ID





https://arxiv.org/abs/1902.07987