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1 Introduction

The potential for hidden systematic e�ects, so-called ”unknown-unknowns”, in a physics
measurement is di�cult to address. This problem can be alleviated by an independent
confirmation in a di�erent experiment. A good example, in particle physics, is the discovery
of the Higgs boson, whereby the simultaneous announcement from both the ATLAS and CMS
experiments of an excess led to high confidence in the discovery [1, 2]. However, the size of
the collaborations and the complexity of the experiments involved can make such independent
confirmations prohibitively expensive for future particle physics experiments. The confidence
in the Higgs discovery was also aided by the fact that it was not completely unexpected: it
was predicted by the Standard Model (SM) of particle physics to emerge with a distinctive
pattern of couplings to the known particles.

The discovery of physics beyond the SM is expected to answer many of the open questions
of the SM and it is therefore the main focus of experimental particle physics. This discovery
will require even more experimental evidence to be confirmed, particularly if it manifests itself
in ways that are unexpected. The question in this case is therefore: under which conditions
can one claim a physics discovery in an experiment which has unique physics sensitivity and
therefore no direct competitors? The answer to this question is normally qualitative, such as
seeing a particular control channel pass a set of compatibility tests or observe new physics
appear with multiple and complementary experimental signatures. The goal of this paper is
to introduce a method that provides quantitative answers to these questions.

The philosophy this paper follows is to apply deep learning techniques to play the devil’s
advocate (DL Advocate), with respect to deviations from the SM. This implies assuming the
true value of the parameters of interest is indeed SM-like and determine what experimental
e�ects could cause the observed set of measurements. Concretely, one can consider the set of
measurements of the experiment as a system of equations:

F(÷̃, �i) = Mi =∆

Y
__]

__[

F(÷̃, �1) = M1
F(÷̃, �2) = M2
· · ·

, (1)

where F represents the measurement process, ÷̃ are parameters in common to all measurements,
such as the detector response, and �i are parameters specific to a particular measurement,
such as theoretical parameters. When a measurement deviates from its SM prediction, it is
tempting to interpret the observed deviation as a sign of physics beyond the SM. However, such
an important claim must be supported by an equally strong confidence in the understanding of
the experimental apparatus. The idea developed in this paper reverses the classical reasoning
and, instead of attributing the observed deviation to physics beyond the SM, it starts from the
SM hypothesis by fixing the theory parameters to their predicted values, uses the simulation
to model F and uses a neural network to find possible values of ÷̃ that reproduce the observed
measurements Mi. In other words, it tries to find possible detector e�ects that can cause the
observed deviation. For the examples illustrated in this paper, the parameters ÷̃ represent a
mismodelling of the detector e�ciency, but can be extended to any assumption in the analysis.
The system in Eq. 1 could in principle include all measurements by the experiment. However,
in practice one can only consider measurements which are correlated either through theory or
experiment.

The advantage of this approach is that the resulting values of ÷̃ can then be used to make
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A simple example: a BR measurement
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- Signal mode: 

‣   with mass  

- Control channel(s): 

‣  

‣

P → V( → AB)C mV

P → X( → AB)C
P → Y( → AB)C
with known masses  and known BRmX(Y)

Different masses      different kinematic!

Detector efficiency typically depends on kinematics (e.g. pT) 
A mismodelling of the efficiency will affect differently signal and control channels 

How much a mismodelling of the efficiency can bias the signal given 
the constraints provided by the control channels?



Key idea - step 1
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- Train a classifier to distinguish the 
different channels

‣ The “perfect” classifier would be able to 
completely separate the phasespace of 
the different channels 

‣ I can arbitrarily modify the efficiency to 
bias the signal without touching the 
control channels  

‣ control channels impose no constraints 
on the signal 

‣ Overlapping response will give the level 
of constraints provided by the different 
channels
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- Linear combination of NN output nodes 
to determine mismodelling weight as 
function of the input detector features

w(xi)
= 1 perfect modelling of the efficiency

> 1 efficiency under-estimated
< 1 efficiency over-estimated

value of the parameters of interest is indeed SM-like and determine what experimental e�ects could42

cause the observed set of measurements. Concretely, one can consider the set of measurements of43

the experiment as a system of equations:44
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_]
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, (1)

where F represents the measurement process, ÷̃ are parameters in common to all measurements,45

such as the detector response, and �i are parameters specific to a particular measurement, such as46

theoretical parameters. The idea is to use the simulation to model F , fix theory parameters to47

their SM values and use a neural network to find the best values of ÷̃ to reproduce the observed48

measurements, Mi. In this paper, the parameters ÷̃ represent a mismodelling of the detector49

response in the measurement, but can be any assumption in the analysis. The system in Eq. 150

could in principle include all measurements by the experiment. However, in practice one can only51

consider measurements which are correlated either through theory or experiment.52

The advantage of this approach is that the resulting values of ÷̃ can then be used to make53

quantitative predictions of mismodelling that can be falsified by additional cross-checks. There are54

two categories of information that ÷̃ can represent. One is high-level information, such as kinematic55

information of particles. A mismodelling as a function of a particle momentum would fall into56

this class of information. Such information can be readily implemented with existing tools, but57

requires physics intuition and therefore has to be tuned to each specific case. The other category58

of information is low-level quantities, such as the material budget and hit resolution. Exploring59

low-level information would require tuning simulation in real time and would be a challenge to60

implement, but would be fully general, applicable for any measurement that relies on simulation.61

In recent years increasingly more interest has been devoted to apply machine learning techniques62

to systematic uncertainties. The main emphasis however has been the optimisation (see e.g. [32,63

13, 15]) or the fidelity of the simulation (see e.g. [29, 14]). In this work the focus is to hunt for64

systematic e�ects of unknown nature and to demonstrate a possible discovery.65

In order to demonstrate the potential of such an approach, we apply this method to the66

lepton universality measurement of RK by the LHCb experiment [3], which exhibits a deviation67

of about 3 standard deviations from SM prediction. It consists of a double ratio of four decay68

channels, which allow to cancel systematic uncertaintites due to e�ciency mismodelling to a high69

degree. It is therefore an ideal testing ground for our approach. Another interesting system to70

test this methodology would be the W mass, which has recently been measured by the CDF71

collaboration [4] to be significantly di�erent from previous measurements [5, 1, 2] and the Standard72

Model prediction [7].73

As discussed below, there are multitude of cross-checks performed and published paper describing74

the analysis. We will use this DLadvocate technique to determine, given the successful results75

of these cross-checks, if it is numerically possible for an e�ciency mismodelling to cause the76

discrepancy seen by the experiment with respect to SM predictions.77

This paper is structured as follows: The general idea and the network implementation is78

described in Sect. 2. The concrete example of RK and the associated control channel measurements79

are briefly summarised in Sect. 3. A possible implementation with Deep Reinforcement learning is80

discussed in Sect. 4, which is followed by a summary section 5 and a conclusion.81

2 Methodology82

Very often, in experimental particle physics, particularly for precision physics, measurements83

are expressed as event counts. Other quantities are expressed as a function of these numbers. Due84

to imperfection of the detection process, the number counted is subject to e�ciency corrections85

that may be performed based on simulation or calibration.86
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The goal of this paper is to find regions of the kinematic space x̨ where a mismodelling
of the e�ciency can have a significant impact in the signal measurement while the e�ect on
the control channels remains within the constraints of Eq. 5. Given these constraints, the
intuition is that this problem can be thought as a classification task between the signal and
control channels using the kinematic variables provided in the space x̨.

2.1 DL Advocate algorithm

The algorithm is formed of two main parts, as shown schematically in Fig. 1. The first
is a fully connected neural network which resembles a multi-classification algorithm. The
inputs are a set of features x whereas the output hj is a classification score for each decay
hypothesis. The last layer of the NN is normalised with a softmax activation function which
enforce hj(x) Ø 0 and

q
j hj(x) = 1. Details on the technical implementation of the neural

network are given in App. A.
The second part of the algorithm consists of a linear combination of the NN output, also

referred to as linear programming (LP), which defines the final per-event weight

w(x) =
ÿ

j

–jhj(x) with –j Ø 0 . (6)

Combining this with Eq. 3 and moving to a vectorial notation we can express the total
per-channel e�ciency as

ei = 1
ni

ÿ

k

–̨ · h̨(xk,i) , (7)

or, in an even more compact form,
ę = H–̨ , (8)

where we have introduced the H matrix which is defined as

Hi,j = 1
ni

ÿ

k

hj(xk,i) . (9)

Here, H is a quadratic M ◊M matrix where M is the total number of decay channels. From the
previous equations it is evident the role of the coe�cients –j which relate the NN classification
response to the di�erent decay-channel e�ciencies. The meaning of the –j coe�cients can be
easily understood in the ideal case of a perfectly discriminating network. In such a scenario H

takes the form of the identity matrix and –j can be individually chosen to satisfy all possible
combination of e�ciencies, i.e. we can choose –(j|jœC) = 1 for all control channels C in order
to perfectly satisfy their e�ciency constraints, and arbitrarily move –(j|j=s) for the signal
channel s to get any possible values for the signal e�ciency es.

In general, however, the H matrix will have non-diagonal terms that correlate the e�ciency
of the di�erent decay channels. The measurements carried out on the control channels,
therefore, provide non trivial constraints on the signal e�ciency.

2.2 Optimisation procedure

The goal of the algorithm is to find the solution that maximises possible shifts in the signal
e�ciency while maintaining the control measurements within their allowed range, as defined
in Eqs. 4 and 5. This is achieved with an iterative procedure:
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- Linear combination of NN output nodes 
to determine mismodelling weight as 
function of the input detector features

⃗x

hj

so
ft
m
a
x

w
α1

α2

α3

LP

w(xi)
= 1 perfect efficiency

> 1 efficiency under-estimated
< 1 efficiency over-estimated

value of the parameters of interest is indeed SM-like and determine what experimental e�ects could42

cause the observed set of measurements. Concretely, one can consider the set of measurements of43

the experiment as a system of equations:44

F(÷̃, �i) = Mi =∆

Y
_]

_[

F(÷̃, �1) = M1
F(÷̃, �2) = M2
· · ·

, (1)

where F represents the measurement process, ÷̃ are parameters in common to all measurements,45

such as the detector response, and �i are parameters specific to a particular measurement, such as46

theoretical parameters. The idea is to use the simulation to model F , fix theory parameters to47

their SM values and use a neural network to find the best values of ÷̃ to reproduce the observed48

measurements, Mi. In this paper, the parameters ÷̃ represent a mismodelling of the detector49

response in the measurement, but can be any assumption in the analysis. The system in Eq. 150

could in principle include all measurements by the experiment. However, in practice one can only51

consider measurements which are correlated either through theory or experiment.52

The advantage of this approach is that the resulting values of ÷̃ can then be used to make53

quantitative predictions of mismodelling that can be falsified by additional cross-checks. There are54

two categories of information that ÷̃ can represent. One is high-level information, such as kinematic55

information of particles. A mismodelling as a function of a particle momentum would fall into56

this class of information. Such information can be readily implemented with existing tools, but57
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ei = 1
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ÿ

k

–̨ · h̨(xk,i) ,

or, in an even more compact form,
Evaluated on MC sample

Key idea - step 2

Goal of the algorithm: 
Check how biased can be the signal efficiency  

while keeping the control channel efficiency within certain limits

analysis and to check for systematic uncertainties. For each of these measurements there are
some observed candidates Ni and an associated e�ciency ei, so that Mi = Ni

ei
. The candidates

of each channel are characterised by a set of variables (features) such as the kinematics of
the produced particles. Di�erences in these distributions, together with a detection e�ciency
which can depend on the same kinematic variables, can result in di�erent total e�ciencies
between the signal and control channels.

Broadly speaking, mismodelling of the e�ciency and unaccounted or mismodelled back-
grounds can create a bias in the measurements, which are accounted for by introducing ad-hoc
systematic uncertainties. As a consequence, partial or incorrect evaluation of these e�ects
would result in underestimated systematic uncertainties. In this paper we will focus on the
role of the e�ciency.

We describe possible mismodelling of the e�ciency with a weighting function w(x), which
depends on the kinematic variables x of the event. Values of w(x) = 1 correspond to a perfect
modelling of the e�ciency, while values below/above unity correspond to e�ciency under/over
estimated. The key idea is that, while the detector response depends entirely on the kinematics
of the single event, the total signal/control channel e�ciency can su�er from di�erent biases
once integrated over the individual kinematic distribution of each decay channel. We can then
define the true total e�ciency for a given channel i as

ei = Ex≥p(x|i) [w(x) ◊ ‘̂(x)] , (2)

where ‘̂(x) is the per-event estimated e�ciency in the experiment and the expectation value
indicates the weighted average over the kinematic distribution of each decay channel p(x|i).
Since our goal is to study the impact of possible mismodelling of the e�ciency in a given set
of measurements we can safely assume ‘̂(x) = 1 without loss of generality. This simplifies the
expression of the per-channel e�ciency to

ei = Ex≥p(x|i) [w(x)] © 1
ni

niÿ

k=1
w(xk,i) , (3)

where we approximated the expectation value with a sum over a large number ni of simulated
events {xk}i, where i labels the di�erent decay channels.

Control channels provide important constraints on how well the e�ciency is estimated.
They are typically selected with topology and kinematics similar to the signal decay mode in
order to maximise the phase space overlap between channels. The result of the measurements
obtained on such control channels can then be compared to known reference values, e.g.
existing precise measurements from other experiments or clean SM predictions. If a good
agreement is found, a certain level of confidence can be ascribed to the estimation of the
e�ciency, at least for what concerns the kinematic regions populated by the control channels.
The requirement that measurements performed on the control channels must be compatible
with a certain reference can be formulated as

Mi œ [M low
i ; M

high
i ] (4)

which reduces to
ei œ [V low

i ; V
high

i ] , (5)
once we restrict the attention to the sole role of the e�ciency in the measurement. Here
V

low
i and V

high
i are the values that bound the e�ciency for the control measurements to pass

scrutiny.
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Figure 1: Schematic view of the DL Advocate algorithm. The algorithm is formed by two
parts: the output of a neural network (NN) is passed to a linear programming (LP) solver
which returns the final weight for each event.

i) the NN is pretrained as a simple classifier, i.e. minimising the cross-entropy loss between
channels;

ii) for a given set of NN parameters ◊ the matrix H is determined and the optimal values
of the coe�cients –̨ are calculated;

iii) with the obtained values of –̨, the NN parameters are updated to improve the current
solution;

with step ii) and iii) repeated for 1000 iterations. In each iteration the value of es is recorded
and the solution that manifests the largest bias in the signal e�ciency is returned at the end of
the procedure. More details on the individual steps ii) and iii) are given in the next subsections.
In general, mismodelling of the e�ciency can result in both over and underestimation of the
total signal e�ciency. In the following, we focus on the minimisation of the signal e�ciency;
oppositely, in order to get the maximum allowed positive shift it will be su�cient to target
≠es instead of es in the minimisation process below.

2.2.1 Determination of the coe�cients –j

In order to find the values of –̨ that allow the largest deviation in es while satisfying the
constraints from the control channels we have to solve the following system of linear equations

Iq
j –jHi,j œ [V low

i ; V
high

i ] ’i œ C ,

es =
q

j –jHi,j æ min for i = s .
(10)

This linear programming (LP) problem can be solved numerically and the minimisation of es

is performed with the SciPy python package with the use of the scipy.optimize.linprog
function [16].
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is performed with the SciPy python package with the use of the scipy.optimize.linprog
function [16].
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keeps matrix invertible
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- Iterative procedure: 
0.  NN pretrained as a pure classifier 
 1.  update   

‣ simple minimization with constraints 

2.  update NN parameters 

‣  

⃗α

ℓ(θ) = es − log det(H)
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- Iterative procedure: 
0.  NN pretrained as a pure classifier 
 1.  update   

‣ simple minimization with constraints 

2.  update NN parameters 

‣  
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‣ Target measurement of                   as function of  

‣ Control channels:
mV

0.2 0.4 0.6 0.8
m̃V

0

20

40

60

80

100

m
ax

im
um

bi
as

(%
)

NN(max p, ↵AB)
NN(max pT , ↵AB)
NN(pA

T , p
B
T )

experiments, the e�ciency to reconstruct and select a given particle is typically dependent
on its (transverse) momentum, which makes particularly important — and potentially prone
to hidden systematics — to have good control of the detector e�ciency as function of those
variables.

In the following, we will therefore train the DL Advocate to evaluate what is the maximum
impact that a hypothetical mismodelling of the e�ciency can have on the determination of
the P æ V C branching ratio under di�erent values of m̃V . It is also important to stress that
the goal of the algorithm shall not be to reconstruct m̃V , which is what occurs if the two
momenta and the opening angle of the AB particles are given to the network, but rather to
explore possible undetected patterns in the e�ciency response of the detector which may lie
hidden in a subset of such kinematic variables.

Three di�erent sets of input variables are therefore considered for this study:

• x = {p
A
T , p

B
T }, the two transverse momenta of particles A and B;

• x = {max p, –AB}, the maximum momentum of the two particles A and B and their
opening angle;

• x = {max pT , –AB}, the maximum transverse momentum of the two particles A and B
and their opening angle;

The DL Advocate algorithm is then trained following the methodology described in Sec. 2
with the constraints imposed by the normalisation and control channels taken into account as
discussed in Sec. 2.2.1. In particular, the constraints takes the form

B(P æ XC) Ã eP æXC œ [≠3%, 3%] , (19)
B(P æ Y C)
B(P æ XC) Ã eBæY C

eP æXC
œ [≠1%, 1%] . (20)

where ei should be interpreted as relative variations of the e�ciency with respect to the
hypothesis of perfectly modelled e�ciency (as defined in Eq. 3) and the former equation
assumes perfect knowledge of the production of the parent particle P . Finally, in order to
evaluate the dependence of the maximum allowed bias on m̃V , the training is repeated for
di�erent values of the normalised resonant mass ranging from 0.1 to 0.9.

3.3 Training and results

Figure 3 shows the evolution of es during the training process for the di�erent values of
m̃V and for the selected input features x = {p

A
T , p

B
T }. A good learning curve is observed for all

cases, with an almost-optimal solution obtained after less than 500 iterations. A very similar
pattern is also seen for the other pairs of features used.

Figure 4 shows the resulting weighting functions obtained from the training of the network
for the three considered sets of variables and for di�erent values of m̃V . For cases where
m̃V < m̃X , the obtained solution shows a clear split of the 2D plane, with a large fraction
of signal events that receive a weight close to zero. This is due to the larger separation in
the kinematic space between signal and control channels, which allows to find a solution that
strongly a�ects the former while keeping unchanged the other two. On the other hand, for
signal masses between or above the X and Y particles, the strong overlap in the kinematic

10
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As expected, maximum allowed bias depends on the mass 
(kinematic overlap) between signal and control channels But quantifiable now!
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Going low level…
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- So far, only considered reconstructed quantities (high levels) 

- However, everything that happens in the detector happens at low level 

‣ Hits, energy deposit, material interaction, etc. 

- MC simulation cannot be described in a parametric way 

‣ Requires a different formulation of the problem 

‣ Interactive tuning of the simulation         RL ? 

‣ Tested (with high level quantities) on an other example of flavour 
physics (angular analysis of rare B decay)

48 Chapter 3: Finite Markov Decision Processes

these actions and presenting new situations to the agent.1 The environment also gives
rise to rewards, special numerical values that the agent seeks to maximize over time
through its choice of actions.

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in a Markov decision process.

More specifically, the agent and environment interact at each of a sequence of discrete
time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives some representation
of the environment’s state, St � S, and on that basis selects an action, At � A(s).3 One
time step later, in part as a consequence of its action, the agent receives a numerical
reward , Rt+1 � R � R, and finds itself in a new state, St+1.4 The MDP and agent
together thereby give rise to a sequence or trajectory that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.1)

In a finite MDP, the sets of states, actions, and rewards (S, A, and R) all have a finite
number of elements. In this case, the random variables Rt and St have well defined
discrete probability distributions dependent only on the preceding state and action. That
is, for particular values of these random variables, s� � S and r � R, there is a probability
of those values occurring at time t, given particular values of the preceding state and
action:

p(s�, r |s, a)
.
= Pr{St =s�, Rt =r | St�1 =s, At�1 =a}, (3.2)

for all s�, s � S, r � R, and a � A(s). The function p defines the dynamics of the MDP.
The dot over the equals sign in the equation reminds us that it is a definition (in this
case of the function p) rather than a fact that follows from previous definitions. The
dynamics function p : S � R � S � A � [0, 1] is an ordinary deterministic function of four
arguments. The ‘|’ in the middle of it comes from the notation for conditional probability,

1We use the terms agent, environment, and action instead of the engineers’ terms controller, controlled
system (or plant), and control signal because they are meaningful to a wider audience.

2We restrict attention to discrete time to keep things as simple as possible, even though many of the
ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis, 1996; Doya, 1996).

3To simplify notation, we sometimes assume the special case in which the action set is the same in all
states and write it simply as A.

4We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next
reward and next state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are
widely used in the literature.

Figure 5: Schematic representation of agent-environment interaction [28]

4 A Reinforcement Learning approach318

As already mentioned, the method proposed in this paper can only reach its full potential319

when applied to low-level detector information. The use of detector-related quantities, such as hits320

positions, energy clusters, magnetic fields, etc., introduces several additional complications to the321

problem, since it requires an accurate description of the detector and, most importantly, an iterative322

refinement of the simulation — the particles interaction with the detector has to be re-evaluated323

for every considered modification. On the other hand, the inclusion of low-level quantities would324

provide a general tool that is applicable to any measurement that relies on simulation, enabling a325

systematic evaluation of all possible mismodellings of the detector response. While a complete326

solution to this problem is out of the scope of this paper, we illustrate with a simplified example327

the use of Reinforcement Learning (RL) to potentially tackle this di�cult task.328

Reinforcement learning [28, 21] recently achieved impressive results in many domains of applied329

research, such as robotics [19], self-driving cars [20], gaming [26]. Coming to high energy physics, it330

has been mainly suggested for jets reconstruction [9, 11] and on-line control system for accelerator331

machines [27]. In this section we discuss the possibility to train a RL agent to play the role of the332

devil’s advocate. The goal of the algorithm is unchanged, i.e. trying to find possible mis-e�ciencies333

that can result in the observed set of measurements; however, we need to introduce some new334

concepts in order to formalise the problem within a RL approach.335

Reinforcement learning algorithms are designed to train an agent via continuous interaction336

with an external environment. At each time step t, the agent makes an observation of the337

environment’s state, St, and, based on such observation, it undertakes a certain action At. In turn,338

as a consequence of this action, the agent will find itself in a new state St+1, while receiving from339

the environment a numerical reward Rt+1. Figure 5 illustrates the described process. Finally, the340

decision-making of the agent, also called policy, fi(a|s), is trained to maximise the expected total341

reward over the long run.342

4.1 Environment’s setup343

Identically to the classifier-based approach discussed in Sec. 2, also in this case we intend to344

describe possible mismodelling of the e�ciency by introducing a weighting function w(x) which can345

depend on the feature space of events. However, instead of training a neural network to determine346

it, we define a parametric expression of the weighting function itself. This approach has some347

advantages, e.g. we avoid the risk of having sharp (unphysical) drop of e�ciencies, as well as348

disadvantages, e.g. it will certainly loose generality compared to the NN output. In short, the349

formulation of a parametric function definitively requires some physics intuition.350

In the following, we will consider a pT -dependent per-lepton e�ciency of the form351

Á(pT ) =


— ◊
!
1 ≠ e≠›pT

"
, (15)

where — and › are coe�cients to be determined. This e�ciency function has the general behaviour352

we can expect from physics considerations, i.e. it is monotonic, it has a plateau for large values353

of transverse momentum while decreases for small values of pT . The parameters — and › control354

respectively the steepness of the rising part of the function and the absolute value of the plateau.355
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Simulation



- Presented method to systematically investigate potentially hidden systematics 

- Focused on the efficiency aspect of a measurement 

‣ Tested on a simple example 

‣ Fully general: can be extended to any measurement that relies on simulation! 

‣ Full potential when applied to low lever features 

- Expand to all aspects of a physics analysis 

‣ Background contamination (work in progress…see Guillermo’s poster on Thursday)

Conclusions & future work

14
Thank you!

https://indico.cern.ch/event/1297159/contributions/5780464/
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48 Chapter 3: Finite Markov Decision Processes

these actions and presenting new situations to the agent.1 The environment also gives
rise to rewards, special numerical values that the agent seeks to maximize over time
through its choice of actions.

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in a Markov decision process.

More specifically, the agent and environment interact at each of a sequence of discrete
time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives some representation
of the environment’s state, St � S, and on that basis selects an action, At � A(s).3 One
time step later, in part as a consequence of its action, the agent receives a numerical
reward , Rt+1 � R � R, and finds itself in a new state, St+1.4 The MDP and agent
together thereby give rise to a sequence or trajectory that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.1)

In a finite MDP, the sets of states, actions, and rewards (S, A, and R) all have a finite
number of elements. In this case, the random variables Rt and St have well defined
discrete probability distributions dependent only on the preceding state and action. That
is, for particular values of these random variables, s� � S and r � R, there is a probability
of those values occurring at time t, given particular values of the preceding state and
action:

p(s�, r |s, a)
.
= Pr{St =s�, Rt =r | St�1 =s, At�1 =a}, (3.2)

for all s�, s � S, r � R, and a � A(s). The function p defines the dynamics of the MDP.
The dot over the equals sign in the equation reminds us that it is a definition (in this
case of the function p) rather than a fact that follows from previous definitions. The
dynamics function p : S � R � S � A � [0, 1] is an ordinary deterministic function of four
arguments. The ‘|’ in the middle of it comes from the notation for conditional probability,

1We use the terms agent, environment, and action instead of the engineers’ terms controller, controlled
system (or plant), and control signal because they are meaningful to a wider audience.

2We restrict attention to discrete time to keep things as simple as possible, even though many of the
ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis, 1996; Doya, 1996).

3To simplify notation, we sometimes assume the special case in which the action set is the same in all
states and write it simply as A.

4We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next
reward and next state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are
widely used in the literature.

Figure 5: Schematic representation of agent-environment interaction [28]

4 A Reinforcement Learning approach318

As already mentioned, the method proposed in this paper can only reach its full potential319

when applied to low-level detector information. The use of detector-related quantities, such as hits320

positions, energy clusters, magnetic fields, etc., introduces several additional complications to the321

problem, since it requires an accurate description of the detector and, most importantly, an iterative322

refinement of the simulation — the particles interaction with the detector has to be re-evaluated323

for every considered modification. On the other hand, the inclusion of low-level quantities would324

provide a general tool that is applicable to any measurement that relies on simulation, enabling a325

systematic evaluation of all possible mismodellings of the detector response. While a complete326

solution to this problem is out of the scope of this paper, we illustrate with a simplified example327

the use of Reinforcement Learning (RL) to potentially tackle this di�cult task.328

Reinforcement learning [28, 21] recently achieved impressive results in many domains of applied329

research, such as robotics [19], self-driving cars [20], gaming [26]. Coming to high energy physics, it330

has been mainly suggested for jets reconstruction [9, 11] and on-line control system for accelerator331

machines [27]. In this section we discuss the possibility to train a RL agent to play the role of the332

devil’s advocate. The goal of the algorithm is unchanged, i.e. trying to find possible mis-e�ciencies333

that can result in the observed set of measurements; however, we need to introduce some new334

concepts in order to formalise the problem within a RL approach.335

Reinforcement learning algorithms are designed to train an agent via continuous interaction336

with an external environment. At each time step t, the agent makes an observation of the337

environment’s state, St, and, based on such observation, it undertakes a certain action At. In turn,338

as a consequence of this action, the agent will find itself in a new state St+1, while receiving from339

the environment a numerical reward Rt+1. Figure 5 illustrates the described process. Finally, the340

decision-making of the agent, also called policy, fi(a|s), is trained to maximise the expected total341

reward over the long run.342

4.1 Environment’s setup343

Identically to the classifier-based approach discussed in Sec. 2, also in this case we intend to344

describe possible mismodelling of the e�ciency by introducing a weighting function w(x) which can345

depend on the feature space of events. However, instead of training a neural network to determine346

it, we define a parametric expression of the weighting function itself. This approach has some347

advantages, e.g. we avoid the risk of having sharp (unphysical) drop of e�ciencies, as well as348

disadvantages, e.g. it will certainly loose generality compared to the NN output. In short, the349

formulation of a parametric function definitively requires some physics intuition.350

In the following, we will consider a pT -dependent per-lepton e�ciency of the form351

Á(pT ) =


— ◊
!
1 ≠ e≠›pT

"
, (15)

where — and › are coe�cients to be determined. This e�ciency function has the general behaviour352

we can expect from physics considerations, i.e. it is monotonic, it has a plateau for large values353

of transverse momentum while decreases for small values of pT . The parameters — and › control354

respectively the steepness of the rising part of the function and the absolute value of the plateau.355
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Simulation

looses generality compared to the NN output (given the enormous number of parameters that
characterises a NN allowing it to be able to approximate any function in its domain), and
second, it definitely requires some physics intuition.

The goal of the RL agent can therefore be formulated as finding the values of the parameters
÷̃ that best satisfies the agreement with the experimental measurements. We can then define:

• the state, s © ÷̃ (renamed for convenience), the list of the parameters used to describe
the weighting function;

• the possible actions, which consist of increasing or decreasing each of the ÷̃ parameter
by a discrete quantity;

• the reward system,

r = 0.01 ◊

Y
__]

__[

≠‰
2
/Nmeas if ‰

2
/Nmeas > 3,

≠‰
2
/Nmeas + 10 (3 ≠ ‰

2
/Nmeas) if ‰

2
/Nmeas œ [0.1, 3],

103 if ‰
2
/Nmeas < 0.1,

(21)

with Nmeas the number of considered measurements and ‰
2 ©

qNmeas
i=1

1
Mi≠µi

‡i

22
where,

recalling the notation introduced in Eq. 1, Mi = F(÷̃) are the values of the di�erent
measurements evaluated at each time step based on the evolving values of the ÷̃ parame-
ters, while µi and ‡i are the corresponding central values and uncertainties measured by
the experiment.

The scheme of Eq. 21 is designed to return a negative reward (proportional to ‰
2) when the

agent is far from finding a good solution that accommodates all the considered measurements
(large ‰

2 values). On the other hand, the agent is encouraged with an increasingly positive
reward once it reaches the condition ‰

2
/Nmeas < 3. Finally, in the event the agent finds a

good compatibility between the obtained solution and the experimental measurements, which
is defined in Eq. 21 as ‰

2
/Nmeas Æ 0.1, a large positive reward is assigned and the episode

is terminated. Ultimately, since ‰
2 can take on very large values, a scaling factor of 0.01 is

added to improve the convergence of the algorithm.
Each episode is run for a maximum of 200 time steps, while the size of each parameter’s

update is adjusted to decrease from 0.1 to 0.01, according to the returned ‰
2
/Nmeas value, i.e.

the closer the algorithm is to the best solution the smaller the parameter’s update will be.
We implemented the described environment within the RLlib python library [32], which

o�ers a great variety of Reinforcement Learning algorithms ready for use. In the following
studies, we will employ deep Q-networks (DQN) [33, 34, 35], which are designed to learn the
action-value function, or Q-value, defined as

Q(s, a) = Efi

C Œÿ

k=0
“

k
Rt+k+1

----St = s, At = a

D

(22)

where “ is a discount factor that weights future rewards compared to present ones, whose
default value is set to 0.99. In general, the Q-value quantifies how good is to take action a while
being in state s; learning the Q-value function is the target of the DQN training procedure.
Once a good approximation of the Q-values is achieved, it will be su�cient to always select
the action with the highest Q-value, namely following a greedy policy, in order to find the
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