Modeling N_{ch} distributions and p_T spectra in high-energy pp collisions with DNNs

Maria Alejandra Calmon Behling, Jerome Jung, Mario Krüger, Henner Büsching

6th Inter-experiment Machine Learning Workshop, CERN

January 29, 2024

Motivation

- ALICE measurements [1] in pp collisions allow studying √s-dependent charged-particle production
- various center-of-mass energies available at LHC
- are observables at unmeasured energies predictable?

ALICE measurements

[1] Phys. Lett. B Volume 845, 10 October 2023, 138110

Motivation

- ALICE measurements [1] in pp collisions allow studying √s-dependent charged-particle production
- various center-of-mass energies available at LHC
- are observables at unmeasured energies predictable?
- PYTHIA-simulated distributions not fully consistent with ALICE data

Ratio to PYTHIA Monash 2013

Motivation

- ALICE measurements [1] in pp collisions allow studying √s-dependent charged-particle production
- various center-of-mass energies available at LHC
- are observables at unmeasured energies predictable?
- PYTHIA-simulated distributions not fully consistent with ALICE data

Alternative approach: DNNs

- parametrization of ALICE data
- predictions beyond discrete LHC energies

Ratio to PYTHIA Monash 2013

Model tuning

Hyperparameter Scan

- Bayesian-optimization search for best architecture
- models trained and evaluated with PYTHIA at:
 - ALICE-equivalent \sqrt{s} (train./val.)
 - $\circ \sqrt{s} = 0.5 \text{ TeV} 100 \text{ TeV}$ (test)

Model tuning

Hyperparameter Scan

- Bayesian-optimization search for best architecture
- models trained and evaluated with PYTHIA at:
 - ALICE-equivalent \sqrt{s} (train./val.)
 - $\circ \sqrt{s} = 0.5 \text{ TeV} 100 \text{ TeV}$ (test)
- model architecture with best extrapolation performance chosen to train ALICE-based DNNs

Model tuning

Hyperparameter Scan

- Bayesian-optimization search for best architecture
- models trained and evaluated with PYTHIA at:
 - ALICE-equivalent \sqrt{s} (train./val.)
 - $\circ \sqrt{s} = 0.5 \text{ TeV} 100 \text{ TeV}$ (test)
- model architecture with best extrapolation performance chosen to train ALICE-based DNNs

Uncertainty estimation

- different hyperparameter configurations
- random initialization and training-data selection

PYTHIA-based DNNs

- trained with simulations at $\sqrt{s} = 2.76, 5.02, 7, 8$ and 13 TeV
- predictions within range $\sqrt{s} = 0.5 100 \text{ TeV}$
- \sqrt{s} -extrapolation highly consistent with test data within $\sqrt{s} = 1.5 - 27$ TeV
- limitations at very high and very low \sqrt{s}

Maria A. Calmon Behling

Modeling charged-particle spectra in pp collisions with deep neural networks

ALICE-based DNNs

- trained with ALICE data at $\sqrt{s} = 2.76, 5.02, 7, 8$ and 13 TeV
- predictions within range $\sqrt{s} = 0.5 100 \text{ TeV}$
- excellent parametrization of ALICE measurements
- data-driven predictions for N_{ch} distributions and p_{T} spectra at arbitrary \sqrt{s}

Modeling charged-particle spectra in pp collisions with deep neural networks

Interpolated pp reference p_{T} spectrum

- heavy-ion R_{AA} requires pp reference *p*_T spectrum at corresponding energy
- DNN provides p_T spectra, which can be converted to INEL through combination with published measurement at $\sqrt{s} = 5.02$ TeV [1]

relevant for LHC Run 3:

- O–O at $\sqrt{s_{\text{NN}}}$ = 6.37 TeV, p–O at $\sqrt{s_{\text{NN}}}$ = 9 TeV
- no dedicated pp data-taking foreseen at these energies

Maria A. Calmon Behling

[1] JHEP 11 (2018) 013

Interpolated pp reference p_{T} spectrum

- heavy-ion R_{AA} requires pp reference
 *p*_T spectrum at corresponding energy
- DNN provides p_T spectra, which can be converted to INEL through combination with published measurement at $\sqrt{s} = 5.02$ TeV [1]

relevant for LHC Run 3:

- O–O at $\sqrt{s_{\text{NN}}}$ = 6.37 TeV, p–O at $\sqrt{s_{\text{NN}}}$ = 9 TeV
- no dedicated pp data-taking foreseen at these energies

> validation of DNN-predicted pp reference by comparing resulting R_{AA} for Xe–Xe at $\sqrt{s_{NN}} = 5.44$ TeV to publication

[1] JHEP 11 (2018) 013

Maria A. Calmon Behling

Modeling charged-particle spectra in pp collisions with deep neural networks

 R_{AA} for Xe–Xe

$$R_{\rm AA} = \frac{{\rm d}N^{\rm AA}/{\rm d}p_{\rm T}}{\langle N_{\rm coll}\rangle {\rm d}N^{\rm pp}/{\rm d}p_{\rm T}}$$

- publication: pp reference p_T spectrum obtained via power-law interpolation between two energies [1]
- ALICE-based DNN: pp reference p_T spectrum from parametrization of five energies + INEL measurement at $\sqrt{s} = 5.02$ TeV
- *R*_{AA} determined with DNN highly consistent with publication
- slight deviations at low $p_{\rm T}$, where DNN uncertainties are smaller

[1] Phys. Lett. B 788 (2019) 166-179

Maria A. Calmon Behling

Modeling charged-particle spectra in pp collisions with deep neural networks

Jan 29, 2024 12

pp reference for O–O in LHC Run 3

- upcoming O–O data-taking in Run 3
- published ratios of p_T-differential cross-sections from NLO pQCD calculations and interpolated measurements [1]
- validation of DNN-predicted pp reference by comparing scaled* ratio to publication
- excellent agreement in overlap area 7 GeV/ $c < p_T < 10$ GeV/c
- DNN successfully extends p_T range down to very low transverse momenta

[1] Phys. Rev. D 105 no. 7, (2022) 074040[2] Phys. Rev. C 97 no. 5, (2018) 054910

Maria A. Calmon Behling

Modeling charged-particle spectra in pp collisions with deep neural networks

Summary & Outlook

- ALICE measurements successfully parametrized by ALICE-based DNN
- \sqrt{s} -extrapolation evaluated via PYTHIA-based DNN
- predicted pp reference validated for Xe–Xe (Run 2)
- DNN extends projected pp reference for future O–O measurements (Run 3) to lower p_T

Outlook

- further details to be published soon
- explore more potential applications of DNNs for parametrizing particle spectra

Summary & Outlook

- ALICE measurements successfully
 parametrized by ALICE-based DNN
- \sqrt{s} -extrapolation evaluated via PYTHIA-based DNN
- predicted pp reference validated for Xe–Xe (Run 2)
- DNN extends projected pp reference for future O–O measurements (Run 3) to lower p_T

Outlook

- further details to be published soon
- explore more potential applications of DNNs for parametrizing particle spectra

Backup

Maria A. Calmon Behling

Modeling charged-particle spectra in pp collisions with deep neural networks

Data preparation

- spectral shapes span many orders of magnitude
 - model works best with smaller range of absolute values
 - Iogarithmic transformation applied to all data
- DNNs tend to memorize training data
 - split data into 80% training,
 20% validation
 - create more datapoints uniformly within systematic data uncertainty

DNN model uncertainties

DNN model architectures

Hyperparameter scan: Bayesian optimization

sampling: discrete values										
layers	neurons per layer	activation function	nction initializer							
2	32	TanH (TH)	RandomUniform (RU)							
3	64	ReLU (RE)	RandomNormal (RN)							
4	128	SeLU (SE)	TruncatedNormal (TN)							
5	256	Swish (SW)	GlorotUniform (GN)							
	512	Mish (MI)	GlorotNormal (GU)							
Softplus (SP)										
sampling: intervals (logarithmic)										
	λ_1	λ_2 learning rate (lr)								
min	$5\cdot 10^{-8}$	$5\cdot 10^{-8}$	$1\cdot 10^{-5}$							
max	$5\cdot 10^{-1}$	$5\cdot 10^{-1}$	$1\cdot 10^{-3}$							

obs.	lay.	nod.	lr	act.	init.	λ_1	λ_2	objective
	5	512	$1\cdot 10^{-5}$	\mathbf{SW}	\mathbf{GU}	$5\cdot 10^{-8}$	$5\cdot 10^{-8}$	0.121
	5	128	$9\cdot 10^{-5}$	SW	GU	$5\cdot 10^{-8}$	$5\cdot 10^{-8}$	0.146
$N_{ m ch}$	2	512	$1\cdot 10^{-4}$	SW	RU	$5\cdot 10^{-8}$	$5\cdot 10^{-8}$	0.148
	4	512	$2\cdot 10^{-5}$	\mathbf{MI}	GU	$5\cdot 10^{-8}$	$5\cdot 10^{-8}$	0.152
	5	512	$1\cdot 10^{-5}$	MI	GU	$5\cdot 10^{-8}$	$5\cdot 10^{-8}$	0.153
	5	512	$8\cdot 10^{-5}$	\mathbf{SW}	\mathbf{GU}	$5\cdot 10^{-8}$	$5\cdot 10^{-8}$	0.080
$p_{ m T}$	5	512	$6\cdot 10^{-5}$	SW	GU	$5\cdot 10^{-8}$	$6\cdot 10^{-6}$	0.085
	5	512	$2\cdot 10^{-4}$	SW	RU	$5\cdot 10^{-8}$	$5\cdot 10^{-8}$	0.100
	5	512	$1\cdot 10^{-4}$	MI	GU	$5\cdot 10^{-8}$	$5\cdot 10^{-8}$	0.102
	5	512	$2\cdot 10^{-x}$	SW	GU	$8\cdot 10^{-7}$	$5\cdot 10^{-8}$	0.110

PYTHIA vs. ALICE-based DNN

- ratio of PYTHIA-simulated to predicted *N*_{ch} spectra by ALICE-based DNN
- DNN reproduces trend observed for ALICE data:
 - $N_{\rm ch} \lesssim 10$: almost \sqrt{s} independent
 - \circ N_{ch} > 10 : energy ordering

trend of deviations observed between PYTHIA and ALICE data extended by ALICE-based DNN beyond LHC energies

PYTHIA vs. ALICE-based DNN

- ratio of PYTHIA-simulated to predicted *p*_T spectra by ALICE-based DNN
- DNN reproduces trend observed for ALICE data:
 - $p_T \lesssim 1 \text{ GeV}/c$: almost \sqrt{s} independent
 - $\circ p_{\rm T} > 1 \text{ GeV}/c$: energy ordering

trend of deviations observed between PYTHIA and ALICE data extended by ALICE-based DNN beyond LHC energies

Energy-dependence of $\langle N_{ch} \rangle$

Interpolated pp reference p_{T} spectrum

- ratio of predicted p_T spectra by ALICE-based DNN at different \sqrt{s} to 5.02 TeV
- shows energy dependence of spectral shape

R_{AA} for heavy-ion collisions

- pp reference $p_{\rm T}$ spectra needed at corresponding \sqrt{s}
- pp measurements not always available

Interpolated pp reference p_{T} spectrum

- publication: Phys. Lett B 788 (2019) 166-179
 - pp reference: power-law interpolation
 - input: two energies (\sqrt{s} = 5.02, 7 TeV)
- comparison of DNN to publication:

 $\circ~$ ratio of $\sqrt{s_{\rm NN}}$ = 5.44 TeV to 5.02 TeV

- DNN:
 - o consistent with PYTHIA and publication
 - $\circ~$ input: five energies (LHC energies)

DNN successfully provides pp reference for heavy-ion collisions

High- p_T extrapolation: TCM fit to DNN

 Two-Component Model (TCM) well-established for parametrizing p_T spectra

$$\frac{d\sigma}{p_{\rm T} dp_{\rm T}} = A_e \exp(-E_{Tkin}/T_e) + \frac{A}{(1 + \frac{p_{\rm T}^2}{T^2 + n})^n}$$

- tail of spectrum at high $p_{\rm T}$ dominated by power law
- > TCM fit to all DNN predictions up to $p_T = 10 \text{ GeV/c}$, which is the p_T range of the ALICE measurements used for training
- excellent agreement up to $p_T = 10 \text{ GeV/c}$, where predictions are well constrained by training data
- increasing deviations for higher $p_{\rm T}$, where DNN has more freedom

