# Masked particle modellingFoundation models for HEP[2401.13537]





J. Raine

Sam Klein +

M. Leigh



L. Heinrich



M. Kagan



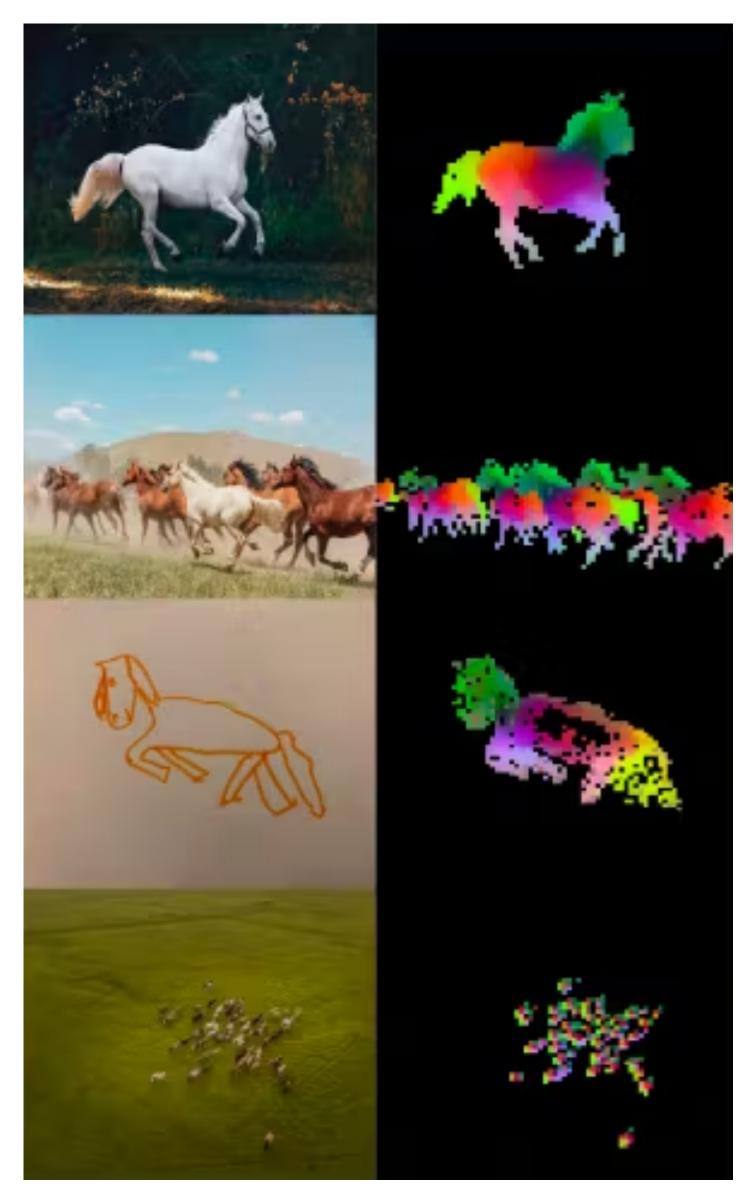
R. Osadchy



T. Golling

# **Foundation models** Why build them?

- Goal is to learn generic and robust representations
  - Allows large models to be efficiently trained on small datasets
  - Same model can be reused for many downstream tasks



#### Image from DINOv2

#### **Foundation models** In HEP?

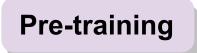
Large Unlabelled Dataset

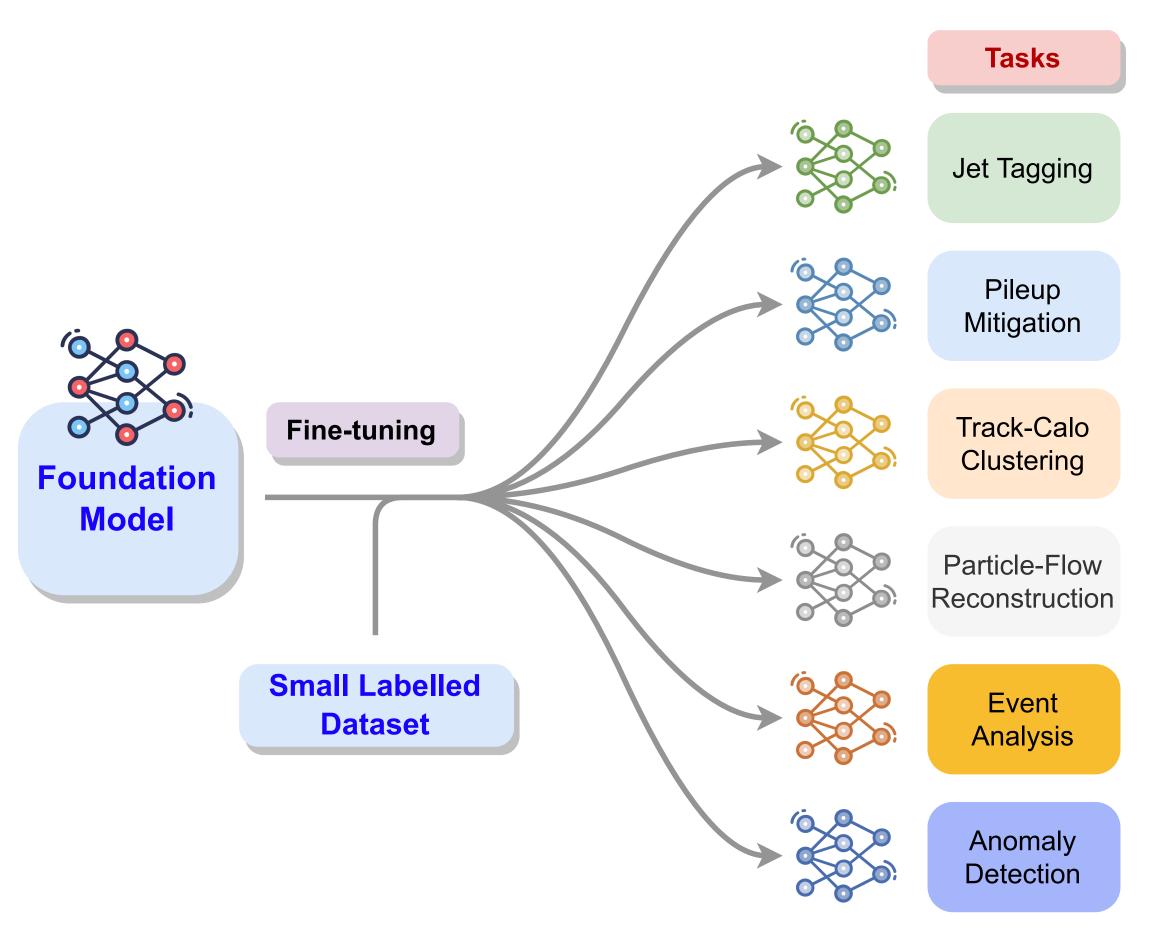
Charged Particle Tracks

Calorimeter Clusters

Calorimeter Hits

Muon Tracks

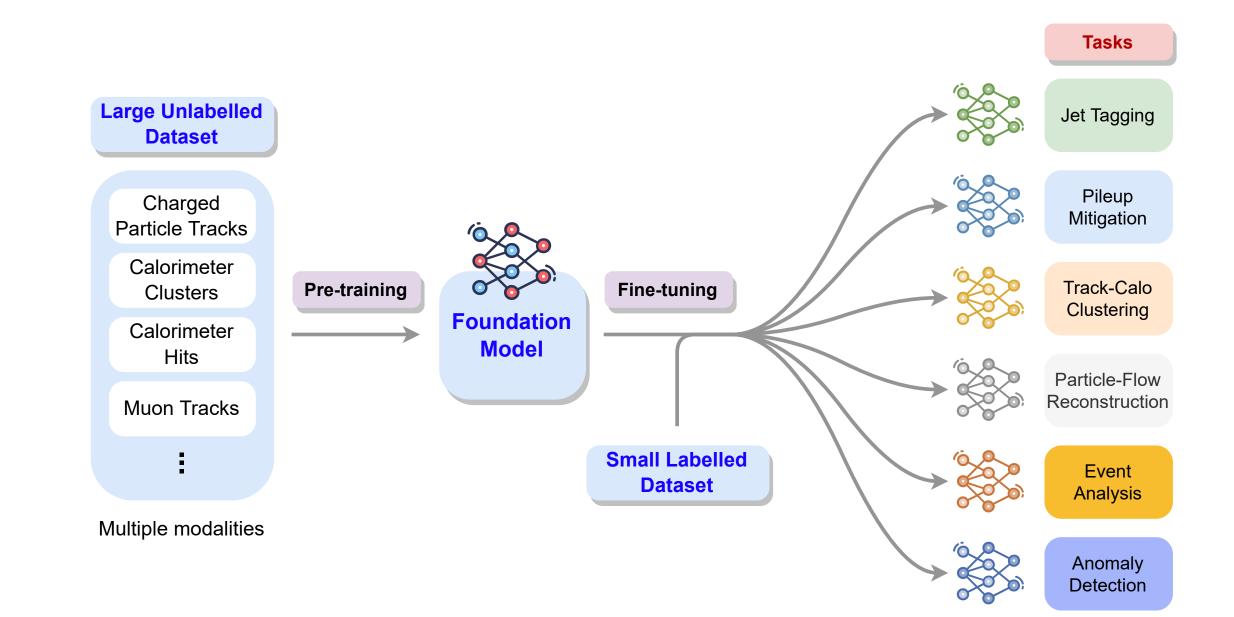




Multiple modalities

# **Foundation models** In HEP?

- Reduce dependence on large simulated datasets for supervised learning
- Help mitigate uncertainties related to domain shift?
- The problem: existing SSL strategies are data type specific, so we need new methods!



# Masked modelling Images and words

- The <u>BERT</u> pretraining strategy has been very successful for NLP
- So has <u>BEiT</u> for images
- Both based on recovering masked input sequences



Original

Image

Image

Patches



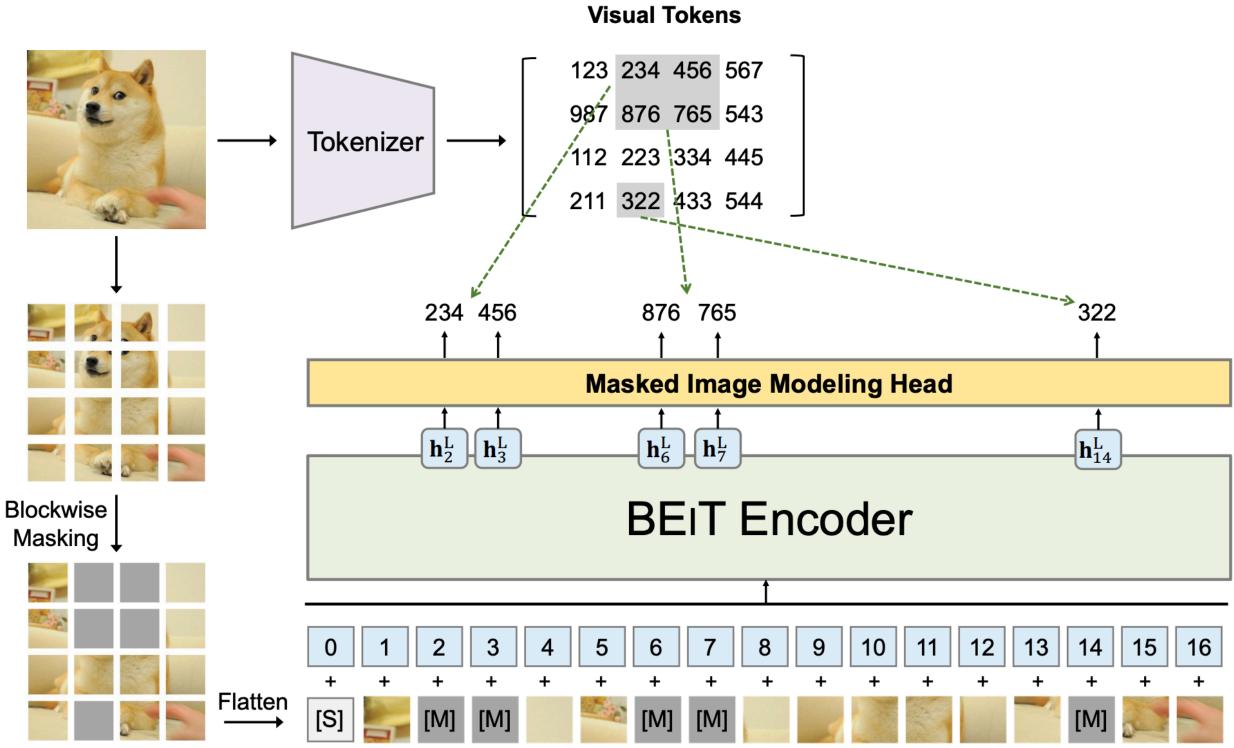


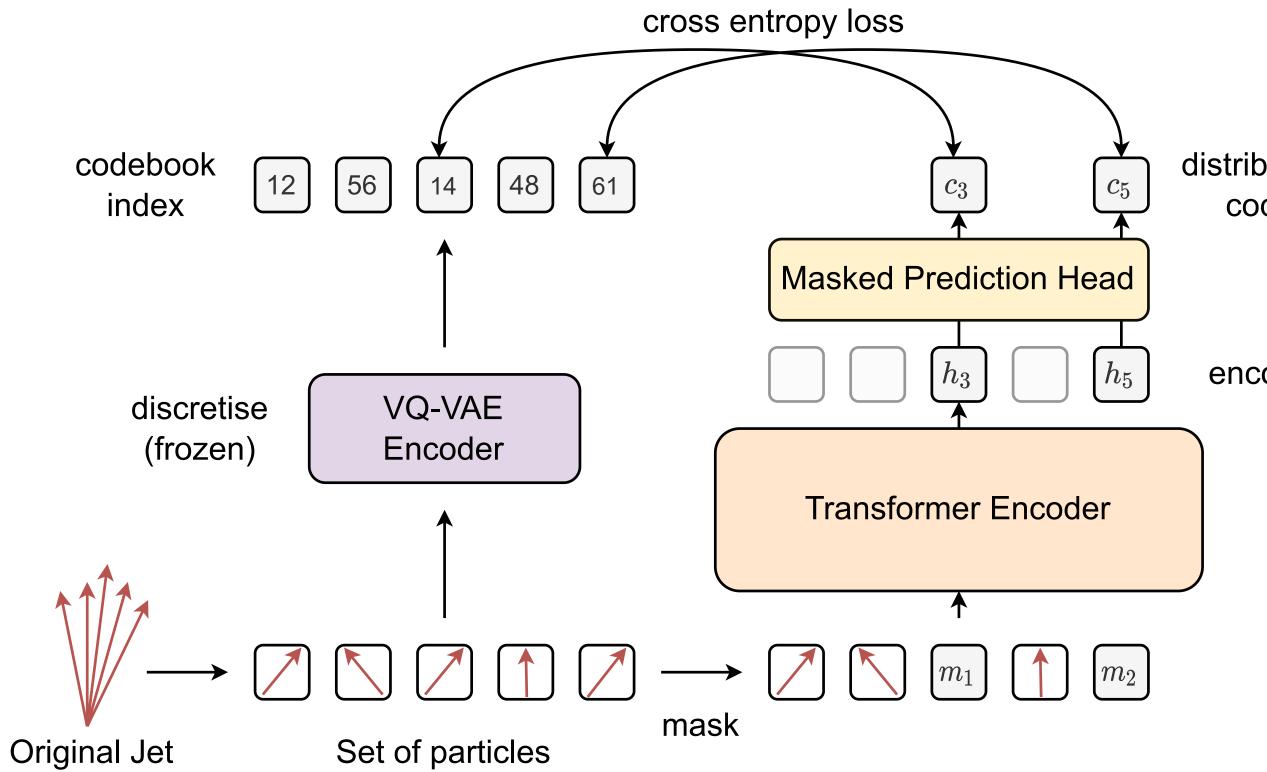
Image from <u>2106.08254</u>



# Masked modelling **Does this work for HEP: Jets**

- Like images: continuous inputs
- Like language: 'meaningful' constituents
- Unlike both: no positional information



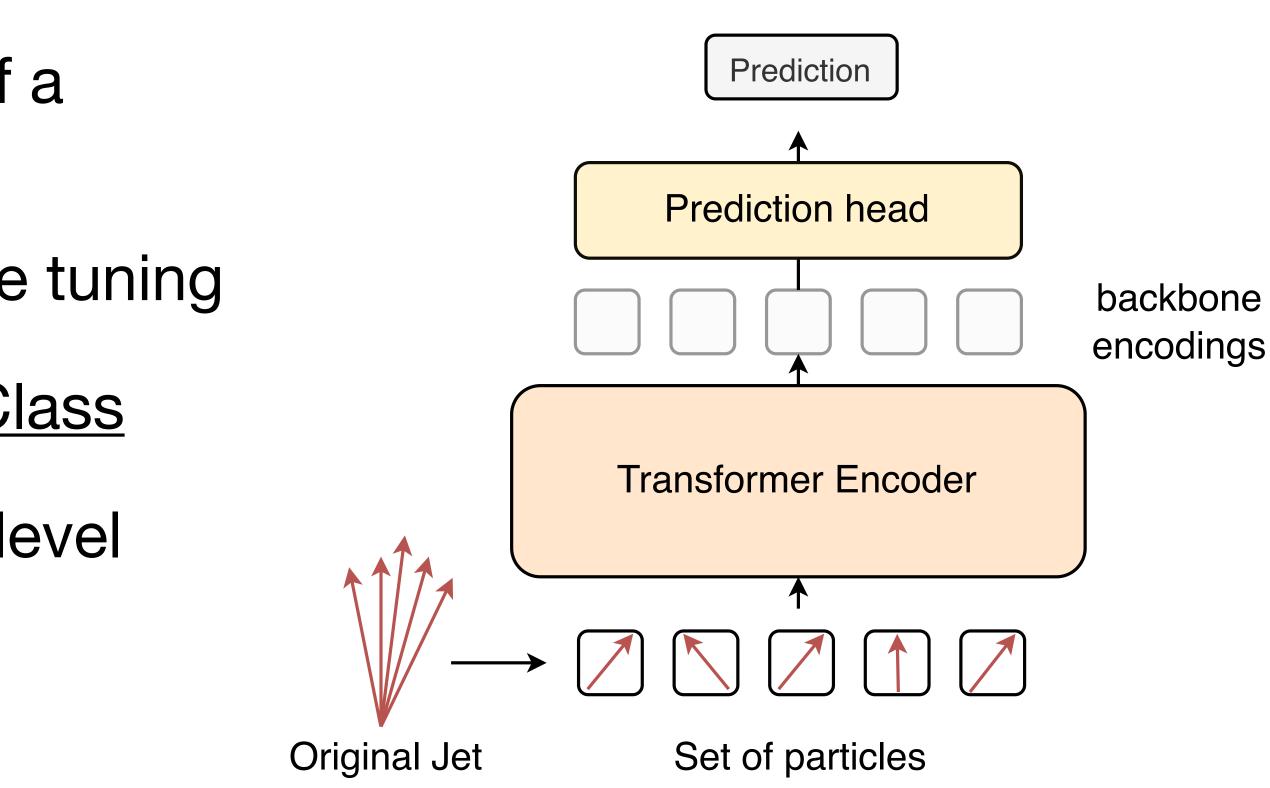


#### distribution over codebook

encodings

# Masked modelling Performance

- How to quantify the performance of a pretrained model?
  - Array of downstream tasks fine tuning
- Pretraining on 100M Jets from <u>JetClass</u>
- Fine tuning on array of different jet level classes



### Masked modelling Training strategies

- fixed backbone:
  Freeze the encoder
- fine-tune backbone: Train the prediction head and the backbone
- from scratch: Reinitialise model from scratch



#### Masked modelling **Permutation invariance**

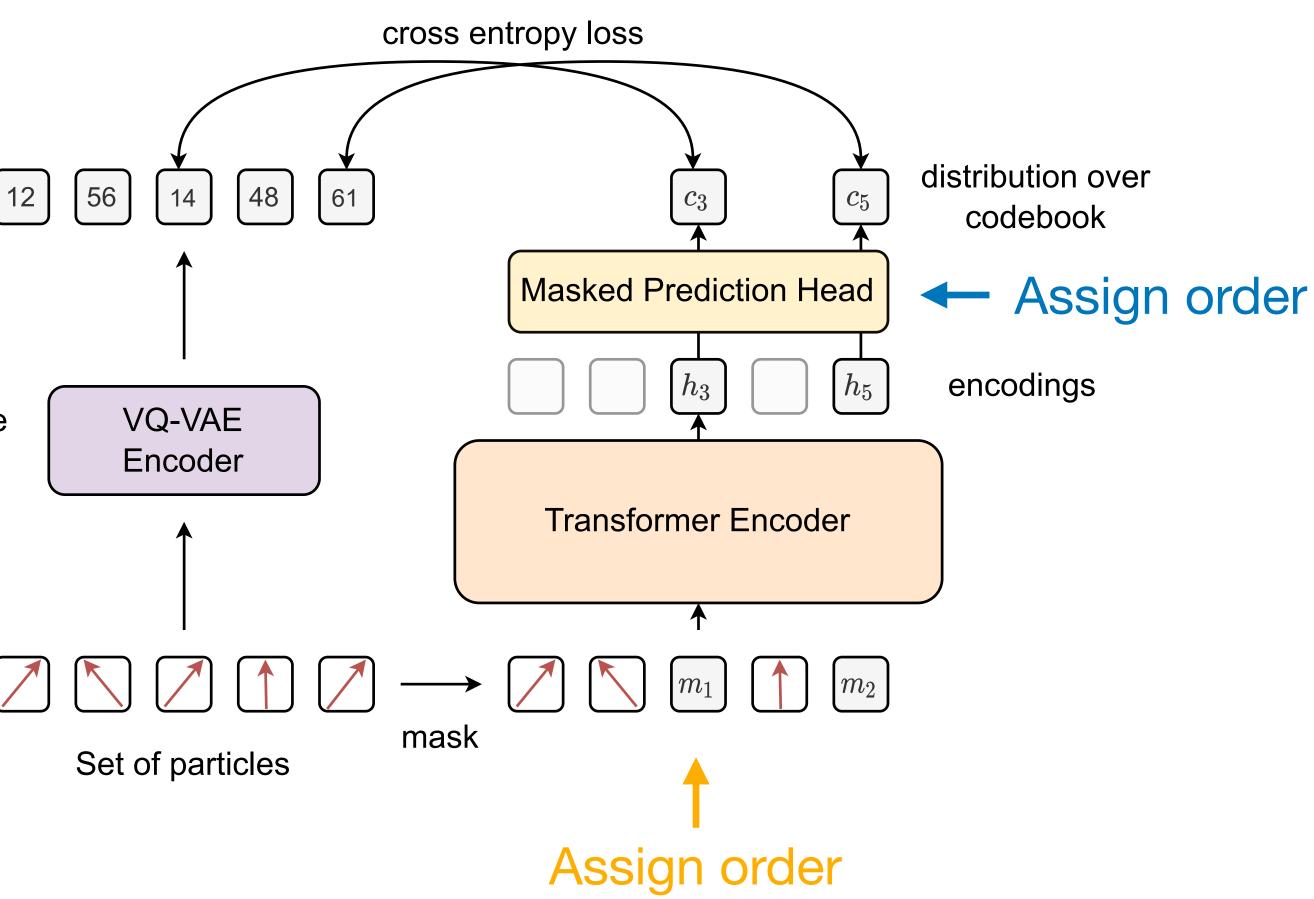
- Three approaches to permutation invariance
  - Don't worry about it
  - Input to backbone
  - Input to masked prediction head

discretise

(frozen)

**Original Jet** 

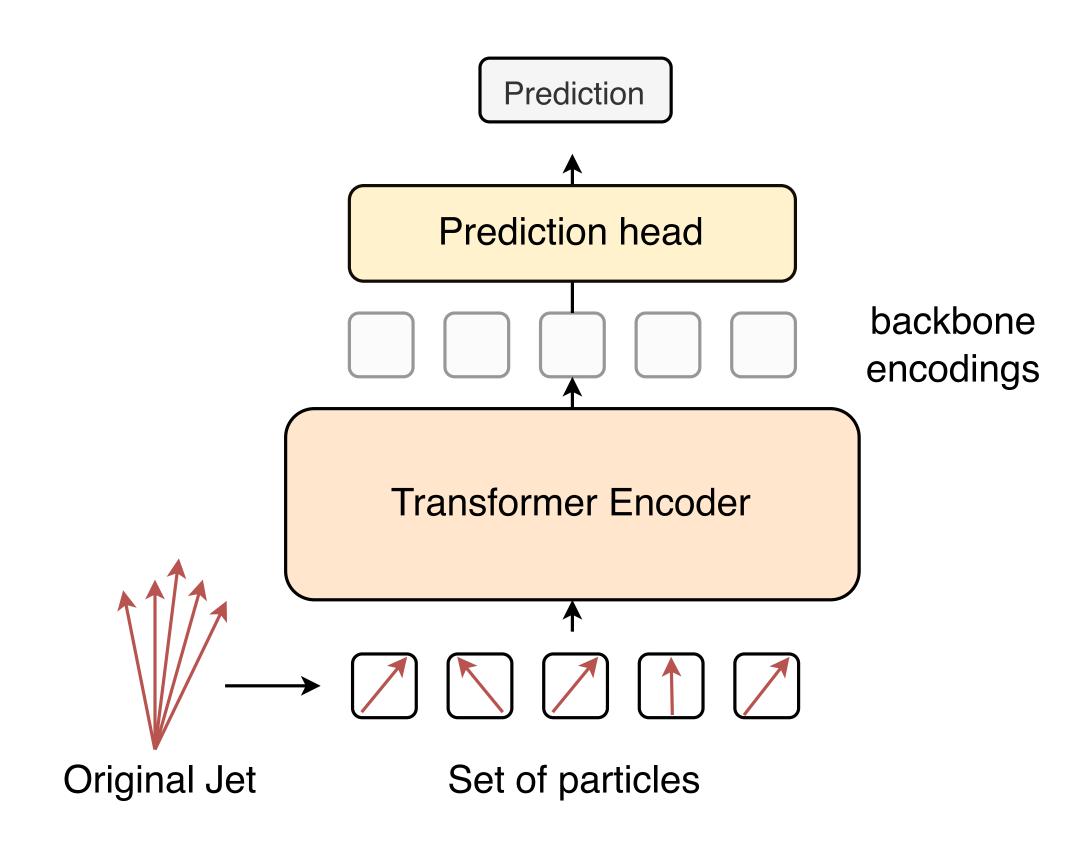
codebook index





#### **Masked modelling** Permutation invariance

- Three approaches to permutation invariance
- Which one to pick?
- JetClass has 10 classes
- Use linear separation



### **Masked modelling** Permutation invariance

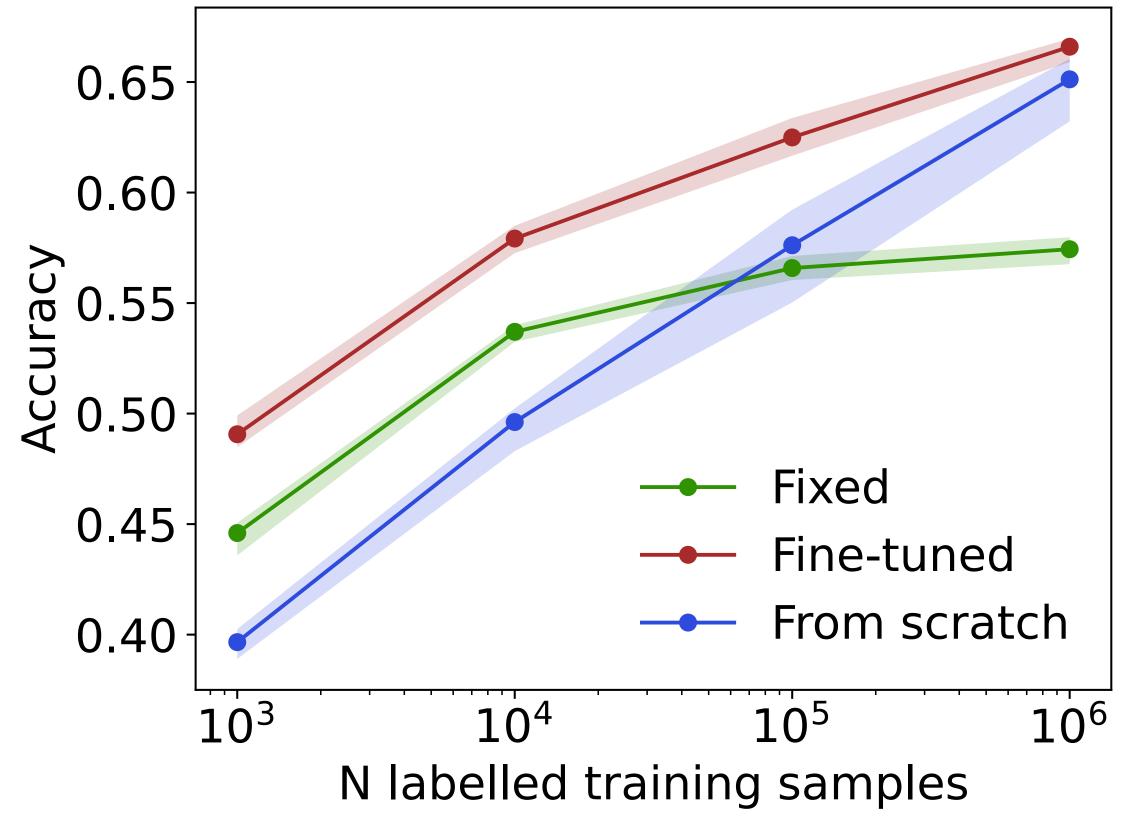
- Ordering at the pretraining head does the best
- Ordering at the input leads to overfitting

|                    | No order | Order<br>input | Order<br>head |
|--------------------|----------|----------------|---------------|
| Linear<br>Accuracy | 54.1%    | 53.4%          | <b>56.8%</b>  |



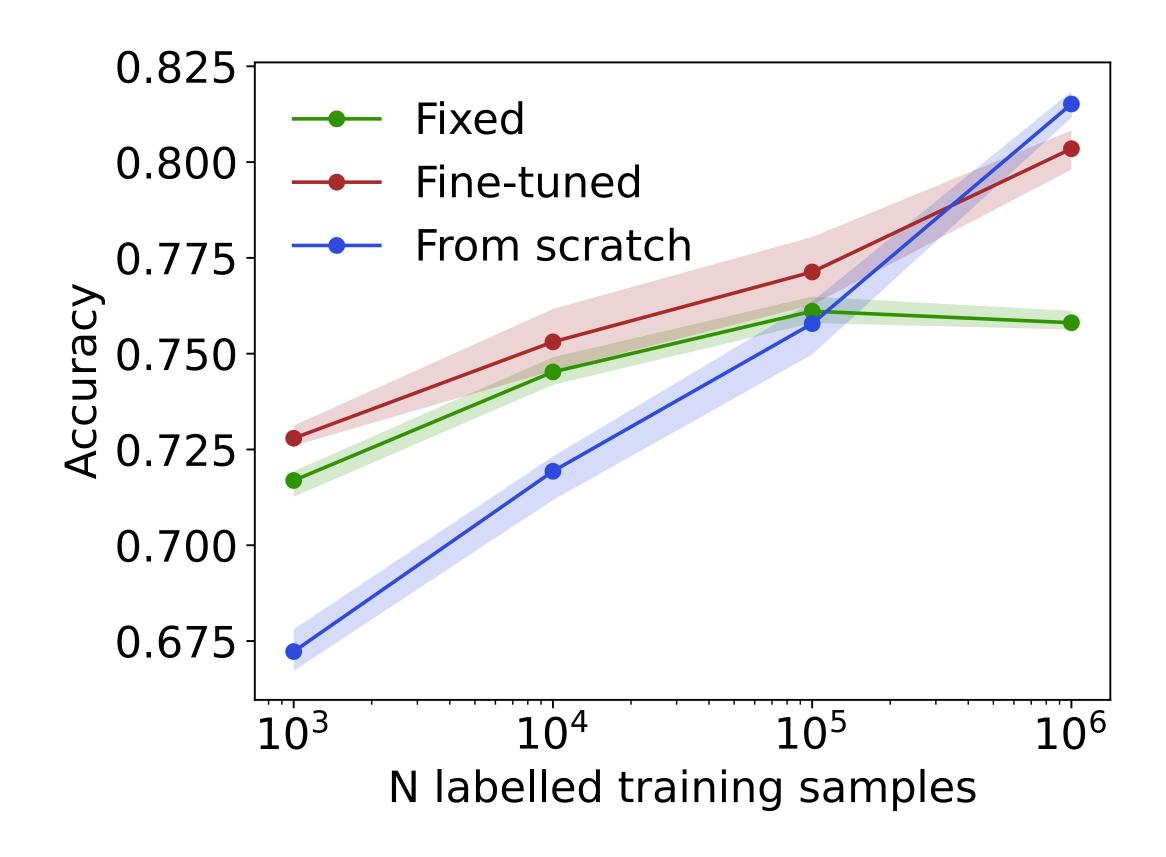
#### Masked modelling Fine tune on pretraining set

- JetClass contains 10 classes
- Select N events and fine tune
- The backbone model outperforms from scratch



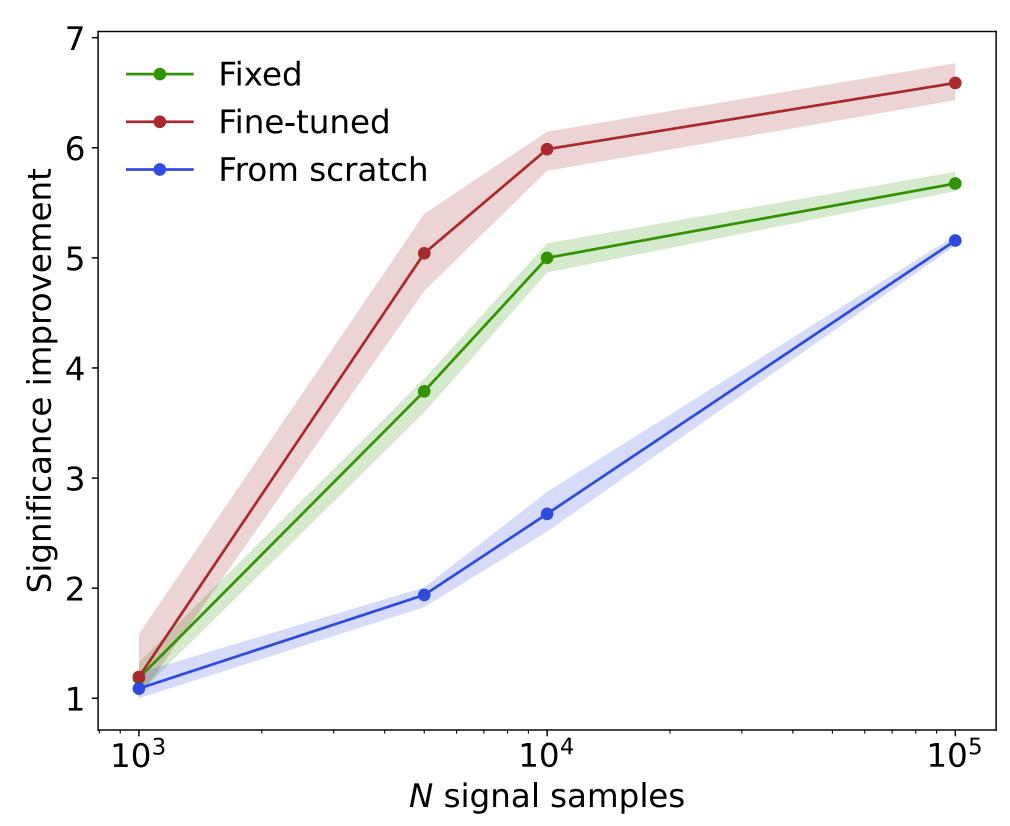
#### Masked modelling Fine tune on new dataset

- The learned features are generically useful
- The performance gain applies to data generated with a different simulator
  - Change card to Atlas and finetune (JetClass is CMS)



#### Masked modelling Fine tune on weak supervision

- Take two QCD samples
- Add x top jets to one sample and label 'signal'
- Fine-tune model on noisy labels
- Pretraining helps!



#### **Summary** Masked particle modelling

- Masked particle modelling is a very useful pretraining task for HEP
- Permutation invariant issue not tackled in other domains
  - Plays important role in HEP
- If we really learned a useful representation then this should be useful for many downstream tasks

