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Foundation models
Why build them?

• Goal is to learn generic and robust 
representations 


• Allows large models to be efficiently 
trained on small datasets


• Same model can be reused for 
many downstream tasks
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Image from DINOv2

https://arxiv.org/abs/2304.07193


Foundation models
In HEP?
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Foundation models
In HEP?

• Reduce dependence on large 
simulated datasets for supervised 
learning


• Help mitigate uncertainties related to 
domain shift?


• The problem: existing SSL strategies 
are data type specific, so we need 
new methods!
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Masked modelling
Images and words

• The BERT pretraining 
strategy has been very 
successful for NLP


• So has BEiT for images


• Both based on recovering 
masked input sequences 

Image from 2106.08254
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https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2106.08254
https://arxiv.org/abs/2106.08254


Masked modelling
Does this work for HEP: Jets

• Like images: continuous 
inputs


• Like language: ‘meaningful’ 
constituents


• Unlike both: no positional 
information
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• How to quantify the performance of a 
pretrained model?


• Array of downstream tasks — fine tuning


• Pretraining on 100M Jets from JetClass


• Fine tuning on array of different jet level 
classes

Masked modelling
Performance
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https://zenodo.org/records/6619768


• fixed backbone:                          
Freeze the encoder


• fine-tune backbone:                    
Train the prediction head and the 
backbone


• from scratch:                             
Reinitialise model from scratch

Masked modelling
Training strategies
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Masked modelling
Permutation invariance
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• Three approaches to 
permutation invariance


• Don’t worry about it


• Input to backbone


• Input to masked 
prediction head



Masked modelling
Permutation invariance
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• Three approaches to 
permutation invariance


• Which one to pick?


• JetClass has 10 classes


• Use linear separation
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Masked modelling
Permutation invariance
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• Ordering at the pretraining head 
does the best


• Ordering at the input leads to 
overfitting

No order Order 
input

Order 
head

Linear 
Accuracy 54.1% 53.4% 56.8%



Masked modelling
Fine tune on pretraining set

• JetClass contains 10 classes


• Select N events and fine tune


• The backbone model 
outperforms from scratch
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Masked modelling
Fine tune on new dataset

• The learned features are generically 
useful


• The performance gain applies to 
data generated with a different 
simulator


• Change card to Atlas and fine-
tune (JetClass is CMS)

13



Masked modelling
Fine tune on weak supervision

• Take two QCD samples


• Add x top jets to one sample and 
label ‘signal’


• Fine-tune model on noisy labels


• Pretraining helps!
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Summary
Masked particle modelling

• Masked particle modelling is a very useful pretraining task for HEP


• Permutation invariant issue not tackled in other domains


• Plays important role in HEP


• If we really learned a useful representation then this should be useful for many 
downstream tasks 
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