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Foundation models
Why build them?

 (Goal is to learn generic and robust
representations
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e Same model can be reused for
many downstream tasks
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https://arxiv.org/abs/2304.07193

In HEP?
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Foundation models
In HEP?

 Reduce dependence on large
simulated datasets for supervised
learning

* Help mitigate uncertainties related to
domain shift?

 The problem: existing SSL strategies
are data type specific, so we need
new methods!
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Masked modelling

Images and words

 The BERT pretraining
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Masked modelling

Does this work for HEP: Jets

* |ike Images: continuous
iINnputs

* Like language: ‘meaningful’
constituents

* Unlike both: no positional
information
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Masked modelling

Performance
 How to quantify the performance of a predicton |
pretrained model? :
[ Prediction head ]
* Array of downstream tasks — fine tuning | backbone
encodings
* Pretraining on 100M Jets from JetClass g : A
Transformer Encoder
* Fine tuning on array of different jet level A L y
classes t
\%—» vl
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https://zenodo.org/records/6619768

Masked modelling

Training strategies

* fixed backbone: | Predicton |
Freeze the encoder A
[ Prediction head ]
* fine-tune backbone: | backbone
Train the prediction head and the R encodings
backbone - A

Transformer Encoder

* from scratch: M ™ f ’
Reinitialise model from scratch \%_, RINIEIBIE
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Masked modelling

Permutation invariance

cross entropy loss

 [hree approaches to
permutation invariance _— K N
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Masked modelling

Permutation invariance

» Three approaches to  Prediction |
permutation invariance A
[ Prediction head ]
* \Which one to pick? | backbone
A encodings
e JetClass has 10 classes g A
| Transformer Encoder
* Use linear separation R : /
\%—» ARD@OC
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Masked modelling

Permutation invariance

* Ordering at the pretraining head
does the best

* Ordering at the input leads to
overfitting
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Masked modelling

Fine tune on pretraining set

o JetClass contains 10 classes 0.65-
. 0.60-
 Select N events and fine tune .
@)
© 0.55
* [he backbone model >
outperforms from scratch £ 0.50
0.45 —e— Fixed
| —e— Fine-tuned
0.40 - —e— From scratch
103 104 105 106

N labelled training samples
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Masked modelling

Fine tune on new dataset

0.825-
* The learned features are generically —e— Fixed
useful 0.8001 e Fine-tuned
07751 —*— From scratch
* The performance gain applies to 9 , -
data generated with a different 5 0750
simulator £ 0.725-
. 0.700-
 Change card to Atlas and fine-
tune (JetClass is CMS) 0.675-
103 104 105  10°

N labelled training samples
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Masked modelling

Fine tune on weak supervision

* Take two QCD samples

 Add x top Jets to one sample and
label ‘signal’

* Fine-tune model on noisy labels

* Pretraining helps!
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Summary

Masked particle modelling

 Masked particle modelling is a very useful pretraining task for HEP
e Permutation invariant issue not tackled in other domains

* Plays important role in HEP

* |f we really learned a useful representation then this should be useful for many
downstream tasks
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