ETHzurich

GpA—

Energy-based graph autoencoders for semi-
visible jet tagging In the Lund representation

Annapaola de Cosa', Roberto Seidita’, Florian Eble?, Christoph Ribbe’

'Department of Physics, ETH Zurich, CH

1 Semivisible Jets

Hidden Valley models provide a possible framework for dark matter [1].
They extend the Standard Model (SM) by a dark sector. If the interac-
tion in the dark sector is confining, bound states (dark hadrons) will
be formed. A fraction of these may be stable, and thus undetectable,
while others may decay back into the SM. This gives rise to semivisible
jets (SVJs) [2].
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Figure 1: Hidden Valley Models. Figure 2: Semivisible Jet

2 The Lund Representation and Graph Autoencoders

Being an unordered set of particles, a jet is most naturally represented
as a graph. Lund graphs specifically are chosen, since they provide a
way to encode the complete clustering history of the jet [3].

An unsupervised approach is pre-
ferred for tagging these jets, as the

true nature of the dark sector is un-
known. Therefore, graph autoenco- fo o
ders are the method of choice. Ll 12 0o
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Similar to a conventional autoen-
coder (AE), a graph autoencoder s
(GAE) embeds a given graph in a
bottleneck dimension and subse-
quently reconstructs it again. The
loss function is the difference bet-
ween the input and output (recon-
struction error).

The GAE is trained only on SM
(background) jets, and is thus ex-
pected to perform worse on jets

outside of the training dataset, I.e.,
SVdJs.

When trained on SM jets, the reconstruction error can thus be used to
classify between them and SVJs.
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Figure 3: Lund graph of a jet with constituent pt.
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Figure 4: Loss Distribution.

3 The Problem of Outlier Reconstruction

Autoencoders are trained to have
low reconstruction error on the trai-
ning distribution. There is no cons-
traint on the performance in other
areas of phase space. This can
lead to signal examples being re-
constructed as well as background
ones, limiting the ability of the AE
to separate the two.
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Figure 5: Outlier Reconstruction.

4 Energy-based Autoencoders

Normalized AEs (NAESs) [4] provide a mechanism to suppress outlier
reconstruction. This is done by enforcing that what is learned is only
the probability of the data p4ai5- This Is achieved by sampling the phase
space in which the AE has low reconstruction error via a Boltzmann
distribution:

:
Po(X) = r, &P (—Eop(x)),

where the energy Ey is taken to be the reconstruction error of the AE,

which depends on the parameters 6 of the network.

The AE is then trained not to minimize the reconstruction error on the
training data, but rather to match the energies on examples drawn
from pgata and py, respectively:
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This prescription ensures that the phase space with low reconstruction
error matches the support of the training data set, suppressing outlier
reconstruction in a fully unsupervised way. NAEs have been shown to
be effective in separating SVJs from SM jets [5].

5 Energy-based Graph Autoencoders

Essential for this approach is the sampling of graphs from py using
MCMC methods. Given a graph as its feature matrix X and adjacency
matrix A, the MCMC step is defined as [6]:

XK= X1 — aBy(XFT, AT 4 Bwk
Ak _ Ak—1 . ’}/IEQ(XK_1,AK_1) n 677k,

where «, 3, v and § are customizable stepsizes and w’ and n* are
gaussian noise terms.

We show that the MCMC is able to correctly sample the space of input
graphs given an example energy function, enabling the extension of
the energy based paradigm to graph networks.
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Figure 6: Visualization of Energy Function and MCMC.
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