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Semivisible jets

Semivisible jets [1] (SVJ) are a new
physics signature arising in Hidden Val-
ley theories where the dark sector is
made of dark quarks interacting via a

confining SU(N) force (dark QCD):

e Dark quarks hadronize

e Unstable dark hadrons decay to
Standard Model (SM) quarks

e SM quarks hadronize
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Autoencoders

Autoencoders (AE) are neural net-
works composed of two parts, an en-
coder followed by a decoder.

AEs are trained to minimize the re-
construction error between input and
output, such that examples out of the
training distribution have a higher
loss.

Trained on SM data, AEs can thus
perform signal-agnostic searches for

new physics |2, 3]. In the case of
SVJs, AEs are trained on SM jets.
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The problem of out-of-distribution reconstruction

AEs were proven to well perform
anomalous detection of SVJs versus
QCD [4]| but achieve poor classifica-

tion of SV Js versus top-quark jets.

10 AEs were trained on a sim-
ulated dataset of top-quark jets
reconstructed with the CMS de-
tector [5| until minimal validation
loss. They take 8 jet substructure
input features, mapped to a normal
distribution. The architecture is a
fully connected network with 10, 10,

6, 10, 10 neurons |[6].

The AEs generalize (reconstruct with
low error) out of the training phase-
space (out-of-distribution, OOD), in
particular in regions where SVJs are
present: the average reconstruction
error for background (SM) and signal
(SVJ) jets is the same. This results in
low anomaly detection performance.
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Normalized autoencoder

Normalized autoencoders |[7] (NAE) suppress OOD reconstruction by
learning the training data probability distribution pg.tn. The NAE model
probability pg is defined to assign high probability to low reconstruction
error (Fjy) examples: |

po(@) = - xp (~Ep(x)

Examples following pg are obtained by sampling via a Langevin Markov
Chain Monte Carlo (MCMC) (“negative examples”). The loss function is
the difference between the reconstruction error of the training (“positive”)
examples and of the negative examples:
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Unsupervised SVJ tagging versus top jet

The loss tunction was modified to prevent the divergence of negative energy
and minimize positive energy while the energy difference is close to 0O:

L =log(cosh(EL — FE_))+aFE

The Energy Mover’s Distance (EMD) is used to quantify the distance
between the training and the negative samples in the input feature space.
As the positive energy is minimized beyond a certain value, the EMD in-
creases: the network cannot bet-
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