
Unsupervised tagging of semivisible jets
with normalized autoencoders in CMS
Florian Eble, Annapaola de Cosa, Roberto Seidita
on behalf of the CMS collaboration

Semivisible jets

Semivisible jets [1] (SVJ) are a new
physics signature arising in Hidden Val-
ley theories where the dark sector is
made of dark quarks interacting via a
confining SU(N) force (dark QCD):

• Dark quarks hadronize
• Unstable dark hadrons decay to

Standard Model (SM) quarks
• SM quarks hadronize
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Figure 1: Schematic illustration of a dark shower from the decay of a Z ′ produced in associ-
ation with a gluon. Figure taken from ref. [10].

that in this set-up all dark pions are stable on cosmological scales and therefore constitute a
potential DM candidate.

The interactions of the dark sector with the SM are mediated by the massive U(1)′ gauge
boson Z ′ with vector couplings to both dark and SM quarks, denoted ed and gq, respectively.
Couplings to leptons, as well as mixing between the Z ′ and SM gauge bosons, are assumed to
be suppressed. In analogy to γ-ρ0 mixing in the SM, the Z ′ mixes with the ρ0

d, which induces
small couplings between the ρ0

d and SM quarks and renders the ρ0
d unstable. For mρd

< 2mπd

the ρ±d mesons can only decay into three-body final states via an off-shell Z ′, which makes
them stable with respect to collider phenomenology. We assume that each mesonic degree of
freedom is produced with the same probability during the dark hadronisation process while
the production of dark baryons in the shower is negligible, and that the ρ0

d mesons decay
promptly.2 The invisible energy fraction in a dark shower is then given by rinv = 0.75, which
we will use as the benchmark value in the following. Furthermore, the relevant mass for
characterising the dark shower is the mass of the dark vector mesons: mmeson = mρd

.
We note in passing that the assumption mρd

< 2mπd
can be motivated from cosmology,

because the relic density of dark pions is determined by the rate of the annihilation process
πdπd → ρdρd, which becomes Boltzmann suppressed at low temperatures. Provided mπd

and mρd
are sufficiently close, the observed relic abundance can be reproduced even for weak

portal interactions and/or heavy Z ′ bosons, which makes it possible to satisfy constraints
from direct detection experiments. For example, for mπd

= 4 GeV and gd = 1 one requires
mρd

≈ 5 GeV, while the Z ′ mediator can be in the TeV range [10].
LHC phenomenology for this model is then dominated by the on-shell production of the Z ′

(possibly in association with SM particles) and its subsequent decays into either SM or dark
quarks. While the former case leads to di-jet resonances that can be easily reconstructed,

2We note that for small Z′ couplings the ρ0
d can be long-lived and lead to displaced vertices at the LHC. The

corresponding production cross sections can nevertheless be sufficiently large that thousands of such events have
already gone unnoticed at ATLAS and CMS. Ongoing detector upgrades as well as new analysis strategies make
these signatures a promising target for future LHC runs. Exploring the sensitivity of searches for displaced
vertices for dark sector models is subject of separate work in progress.
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Figure 1: Schematic illustration of a dark shower from the decay of a Z ′ produced in associ-
ation with a gluon. Figure taken from ref. [10].
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potential DM candidate.
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≈ 5 GeV, while the Z ′ mediator can be in the TeV range [10].
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(possibly in association with SM particles) and its subsequent decays into either SM or dark
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Autoencoders

Autoencoders (AE) are neural net-
works composed of two parts, an en-
coder followed by a decoder.

AEs are trained to minimize the re-
construction error between input and
output, such that examples out of the
training distribution have a higher
loss.

Trained on SM data, AEs can thus
perform signal-agnostic searches for
new physics [2, 3]. In the case of
SVJs, AEs are trained on SM jets.
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Reconstruction error

The problem of out-of-distribution reconstruction
AEs were proven to well perform
anomalous detection of SVJs versus
QCD [4] but achieve poor classifica-
tion of SVJs versus top-quark jets.

10 AEs were trained on a sim-
ulated dataset of top-quark jets
reconstructed with the CMS de-
tector [5] until minimal validation
loss. They take 8 jet substructure
input features, mapped to a normal
distribution. The architecture is a
fully connected network with 10, 10,
6, 10, 10 neurons [6].

The AEs generalize (reconstruct with
low error) out of the training phase-
space (out-of-distribution, OOD), in
particular in regions where SVJs are
present: the average reconstruction
error for background (SM) and signal
(SVJ) jets is the same. This results in
low anomaly detection performance.
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Normalized autoencoder
Normalized autoencoders [7] (NAE) suppress OOD reconstruction by
learning the training data probability distribution pdata. The NAE model
probability pθ is defined to assign high probability to low reconstruction
error (Eθ) examples:

pθ(x) = 1
Ωθ

exp (−Eθ(x))

Examples following pθ are obtained by sampling via a Langevin Markov
Chain Monte Carlo (MCMC) (“negative examples”). The loss function is
the difference between the reconstruction error of the training (“positive”)
examples and of the negative examples:

Ex∼pdata [Lθ(x)] = Ex∼pdata [Eθ(x)] − Ex′∼pθ
[Eθ(x′)]

positive energy E+ negative energy E−

Unsupervised SVJ tagging versus top jet
The loss function was modified to prevent the divergence of negative energy
and minimize positive energy while the energy difference is close to 0:

L = log (cosh (E+ − E−)) + αE+

The Energy Mover’s Distance (EMD) is used to quantify the distance
between the training and the negative samples in the input feature space.
As the positive energy is minimized beyond a certain value, the EMD in-
creases: the network cannot bet-
ter reconstruct training examples and
suppress OOD reconstruction at the
same time. The best epoch is just
before the EMD increase: mini-
mal OOD reconstruction and max-
imal training examples reconstruc-
tion. This is a fully signal-
agnostic procedure to train a
NAE, not using signal SVJs sim-
ulation.
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