Re-simulation-based self-supervised learning (RS3L)

6th IML Workshop January 30, 2024

Jeffrey Krupa^{1,2}, Benedikt Maier³, Michael Kagan⁴, Nathaniel Woodward^{1,2}, Philip Harris^{1,2}, Maurizio Pierini⁵

The NSF Institute for Artificial Intelligence and Fundamental Interactions

Representations

• Can we use AI to learn generic representations of jets?

Representations

• Can we use AI to learn generic representations of jets?

Representations

• Can we use AI to learn generic representations of jets?

4

Self-supervised Learning (SSL)

 Learn using only relations between the same objects from different perspectives

Self-supervised Learning (SSL)

Learn using only relations between the same objects from different perspectives

- Classes = Higgs and QCD
- Augmentations = reshowering parton with different simulators (pythia tunes + herwig)

Where to start?

- We begin by investigating Higgs and QCD jets with various parton shower models
 - Parton shower assumptions can be leading uncertainties in physics analyses (e.g. 2208.02751)

Where to start?

- We begin by investigating Higgs and QCD jets with various parton shower models
 - Parton shower assumptions can be leading uncertainties in physics analyses (e.g. 2208.02751)

The Augmentations

Parton showered with Pythia8 Same parton showered with Herwig

The Augmentations

Parton showered with Pythia8 Same parton showered with Herwig

The Augmentations

Parton showered with Pythia8 Same parton showered with Herwig

11

We use a self-supervised graph neural network to pull together the nominal and augmented (re-simulated) jet pair

→ Re-simulation-based self-supervised learning (RS3L)

Pythia/Herwig ratio is reduced \rightarrow our space learns features of H and QCD with less reliance on simulator

tSNE of 8 contrastive features

QCD (pythia) QCD (herwig) H (pythia) H (herwig)

tSNE of 8 contrastive features

15

tSNE of 8 contrastive features

QCD (pythia) QCD (herwig) H (pythia) H (herwig)

We consider this RS3L space as a backbone in learning tasks both in and out of the RS3L training domain

#1: In-domain classification

QCD background rejection rates at various Higgs tagging efficiencies.

Higgs efficiency	0.3	0.5	0.7
RS3L fine-tuned (3M)	1340	379	135
Fully-supervised $(8M)$	1295	384	131

17

0.3	0.5	0.7
1/(QCI	D efficiencv)	
0.3	0.5	0.7

#1: In-domain classification

QCD background rejection rates at various Higgs tagging efficiencies.

RS3L gives similar performance on in-domain classification

	0.3	0.5	0.7
1	/(QCI	D efficience)	
	0.3	0.5	0.7

- What effect does changing simulators (pythia→Herwig) have on the output of the final classifier?
 - We use the Wasserstein distance to quantify the difference between tagger evaluated on nominal and augmented jets

- What effect does changing simulators (pythia→Herwig) have on the output of the final classifier?
 - We use the Wasserstein distance to quantify the difference between tagger evaluated on nominal and augmented jets

Compute Wasserstein distance between Herwig and Pythia

Wasserstein distance between taggers distributions evaluated on pythia and herwig Higgs jets.

Training setup	Herwig	
RS3L fine-tuned (3M)	7.8×10^{-3}	
Fully-supervised (8M)	9.4×10^{-3}	

Wasserstein distance between taggers distributions evaluated on pythia and herwig Higgs jets.

#2: Out-of-domain classification

- Does the RS3L space (trained on Higgs and QCD) contain useful information about **other processes**
 - out-of-domain learning: apply RS3L base to **W jets**

#2: Out-of-domain classification

- Does the RS3L space (trained on Higgs and QCD) contain useful information about **other processes**
 - out-of-domain learning: apply RS3L base to **W jets**

W efficiency	0.3	0.5	0.7
RS3L fine-tuned (3M)	1893	505	147
Fully-supervised (3M)	1781	457	134

#2: Out-of-domain classification

- Does the RS3L space (trained on Higgs and QCD) contain useful information about **other processes**
 - out-of-domain learning: apply RS3L base to **W jets**

Conclusion

- Self-supervision helps us build a representation without labels
 - Could be a path toward a **foundation model** for HEP data
- RS3L has significant potential in downstream applications including:
 - Acting as a foundation for **discrimination tasks** (e.g. QCD/H)
 - Helping to **mitigate uncertainties** (e.g. parton showering)
 - Translating learning to out-of-domain classification tasks

Jet kinematics

Corner Plots of contrastive features

• Higgs jets occupy a relatively larger volume of the space and tend to be distributed more uniformly

learned SSL features are largely independer other 29

QCD-only training inferred on Higgs

• We learn a reasonable Higgs representation despite training only on QCD

Full tSNE

0.5

1.0

H vs QCD ROC

W vs QCD ROC

