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• Can we use AI to learn generic representations of jets?
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• Can we use AI to learn generic representations of jets?
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Once we have a representation, how can we 
apply it as a pre-trained "backbone" model to 

solve downstream tasks? 



• Learn using only relations between the same objects from 
different perspectives

Self-supervised Learning (SSL)
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• Classes = Higgs and QCD 
• Augmentations = reshowering parton with different simulators 

(pythia tunes + herwig)



• We begin by investigating Higgs and QCD jets with 
various parton shower models 
• Parton shower assumptions can be leading 

uncertainties in physics analyses (e.g. 2208.02751)
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Where to start?

Large  
herwig/pythia ratio  
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• We begin by investigating Higgs and QCD jets with 
various parton shower models 
• Parton shower assumptions can be leading 

uncertainties in physics analyses (e.g. 2208.02751)



The Augmentations

H(bb) Light quark
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Parton showered with Pythia8 
Same parton showered with Herwig
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The Augmentations
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We use a self-supervised graph neural network to pull 
together the nominal and augmented (re-simulated) jet pair 
→ Re-simulation-based self-supervised learning (RS3L)
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The RS3L Space
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Jet N2 One RS3L feature
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The RS3L Space

Pythia/Herwig ratio is reduced → our space learns 
features of H and QCD with less reliance on simulator
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Jet N2 One RS3L feature
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The RS3L Space
tSNE of 8 contrastive features
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QCD (pythia) 
QCD (herwig) 
H (pythia) 
H (herwig)



The RS3L Space
tSNE of 8 contrastive features
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Separation 
between classes

Grouping 
within classes
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The RS3L Space
tSNE of 8 contrastive features
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Separation 
between classes

Grouping 
within classes

QCD (pythia) 
QCD (herwig) 
H (pythia) 
H (herwig)

We consider this RS3L space as a backbone in learning 
tasks both in and out of the RS3L training domain



#1: In-domain classification
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QCD background rejection rates at various 
Higgs tagging efficiencies.



#1: In-domain classification
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QCD background rejection rates at various 
Higgs tagging efficiencies.

RS3L gives similar performance on 
in-domain classification



Robustness of RS3L space
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• What effect does changing simulators (pythia→Herwig) 
have on the output of the final classifier?  

• We use the Wasserstein distance to quantify the 
difference between tagger evaluated on nominal and 
augmented jets



Robustness of RS3L space
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Compute 
Wasserstein 
distance 
between 
Herwig and 
Pythia

• What effect does changing simulators (pythia→Herwig) 
have on the output of the final classifier?  

• We use the Wasserstein distance to quantify the 
difference between tagger evaluated on nominal and 
augmented jets
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Robustness of RS3L space

21

Wasserstein distance between taggers distributions 
evaluated on pythia and herwig Higgs jets.



Robustness of RS3L space
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Fine-tuning RS3L reduces distance 
→ SSL can provide more robust 

observables

Wasserstein distance between taggers distributions 
evaluated on pythia and herwig Higgs jets.



#2: Out-of-domain classification
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• Does the RS3L space (trained on Higgs and QCD) contain 
useful information about other processes  

• out-of-domain learning: apply RS3L base to W jets 
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#2: Out-of-domain classification
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Starting from RS3L base → 
improvement in out-of-domain 

classification

• Does the RS3L space (trained on Higgs and QCD) contain 
useful information about other processes  

• out-of-domain learning: apply RS3L base to W jets 



Conclusion
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• Self-supervision helps us build a representation without labels 

• Could be a path toward a foundation model for HEP data 

• RS3L has significant potential in downstream applications including: 

• Acting as a foundation for discrimination tasks (e.g. QCD/H) 

• Helping to mitigate uncertainties (e.g. parton showering) 

• Translating learning to out-of-domain classification tasks



Backup
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Jet kinematics
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• Higgs jets occupy a relatively larger volume of the space 
and tend to be distributed more uniformly

Corner Plots of contrastive features

Higgs QCD
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learned SSL features are largely independent of each 
other



• We learn a reasonable Higgs representation despite 
training only on QCD

QCD-only training inferred on Higgs
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Full tSNE
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H vs QCD ROC
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W vs QCD ROC
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