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‣ Over the next years, the LHC detectors will face significantly increased luminosities 

‣ One of main challenges in this high pile-up environment will be the ability to perform 
efficient vertexing 

‣ While the original studies are specific to the LHCb geometry and operating conditions, the 
possibility of using the same approach in the ATLAS experiment has been investigated 

❖ Main goals: 
- train realistic algorithms (in terms of fidelity and throughput) to find PVs with high 

efficiency while producing false positives at low rates  

- understand how the results depend on underlying model architectures and input features   

- develop an algorithm to assign tracks to PVs probabilistically 

Motivations
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• poca-ellipsoids: the positions and error ellipsoids at tracks' positions of 
closest approach to the beamline. These are used to build Kernel Density 
Estimators along the beamline direction 

• target histograms: proxies that are Gaussian distributions whose heights 
and widths reflect the expected PV resolutions 

• CNNs are trained to predict distributions similar to the target histograms 

• Heuristic algorithms extract PV positions from the predicted histograms
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General key concepts

Simon Akar 3Deep Learning PV-Finder — 6th IML Workshop — 2024 

PV-finder flow

Training
Validation

Illustration: 
POCA ellipsoid projections
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• Using KDEs (Kernel Density Estimators) to reduce 
very sparse 3D data (tracks parameters ; O(10-100 M) 
pixels) to feature-rich 1D data — kernel densities in z — 
describing how tracks behave near their points of 
closest approach (POCA) to the beamline 

‣ KDE_A ︎  

‣ KDE_B ︎ 2 
‣ using both KDE_A and KDE_B as input features, along with 

the values of x and y where the maximum values of KDE_A 
were observed produced the best KDE-to-hist
- XMax and YMax  

• LHCb KDE-to-hist models use similar KDEs:  
better separated PVs due to lower pile-up; worse z resolution 

≈ ∑ probabilities
≈ ∑ probabilities

General key concepts
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KDE distributions exhibit peaking structures near PV positions 
Hand-written KDE computations expensive!



• Target histograms: (examples from LHCb) 

• target histograms are Gaussian distributions with heights and widths calculated 
from “expected” resolution (based on the true number of tracks originating from PV) 

• predicted histograms are produced by the PV-finder inference engine
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• End-to-end DNN: from tracks features to target histograms 

1. The Fully Connected (FC) layers are first trained with KDE as target: tracks-to-KDE 

2. The UNet layers are similar to those used previously to predict the target histograms: KDE-to-hist
3. The full model (FC+UNet) is trained with all FP32 weights floating: tracks-to-hist
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Latest DNN architecture for LHCb

POCA 
 9 params/track 

max(N tracks)=250

6 Fully Connected 
layers building  

(8 x 100) output 
channels  
x (40/evt)

UNet layers summing the 8 
contributions per bin to construct 

final predicted histogram

100-bin hist 
as output 
x (40/evt)

UNet layers Fully Connected 
layers Inputs Outputs
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The tracks-to-hist model presented above builds on domain expertise, as 
does the method for training it: 

1. The FC network is trained to produce KDE_A from 
poca_ellipsoids. 
- in intervals of 100 bins as trying to learn the full 4000-bin KDE failed  
- FC network calculates contributions for each track, and then sums them  

2. The full model (FC + UNet) is trained to produce KDE_A;  
- the 100-bin layer 6 output is replaced by 8 100-bin latent features 
- initially the weights and biases from the first 5 layers are frozen 

3. Finally, exactly the same full model (FC + UNet) is trained 
with PV target histograms rather than KDE_A histograms 
as the labels and using a “more sophisticated” cost function*
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Training the tracks-to-hist model
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*including an asymmetry parameter providing a 
  handle to adjust for efficiency vs false positive rate  



• Magenta circles: 
‣ latest results from tracks-to-hist 

deep neural network 

‣ using FP32 arithmetic and with  
64 channels in the first UNet layer 

‣ efficiencies and false positive rates 
shown here adhere to LHCb definitions 

‣ for details, see CHEP-23 proceeding 

• Other points: 
‣ results from KDE-to-hist models as 

previously reported (see Refs. slide 2) 

➡ Continuous improvements over  
the years with refined models 

➡ End-to-end model performs better than KDE-to-hist
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LHCb results: nominal model

LHCb run 3 simulation 
~5.5 visible PVs per 
  beam crossing

https://inspirehep.net/literature/2701952
https://inspirehep.net/literature/2701952


• Lower precision: 
‣ find a good balance between accuracy 

vs computational and memory costs of 
inference engine (targeting to deploy 
algorithm at the trigger level) 

• Magenta circles: 
‣ Nominal results (as previous slide) but 

after training with less epochs; for 
comparison w/ other points on this plot  

‣ NB: reduced scales compared to plot 
on previous slide! 

• Crosses points: 
‣ FP16 arithmetic with 64, 32 and 16 

channels in the first UNet channel 

➡ Slight performance reduction  
for either reduced precision and/or model size!
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LHCb results: reduced FP precision

LHCb run 3 simulation 
~5.5 visible PVs per 
  beam crossing



• Key idea 
‣ Find balance between reducing model size  

(by removing weights, i.e. pruning) and model accuracy 

• Iterative pruning of tracks-to-hist model: 
- Train for five epochs [no pruning] establishing baseline 

- Prune 5% of initial FC layers, then retrain for 25 epochs 

- Prune 20% more of initial FC layers [left plot] 
done in 4 steps of 5% @epochs 30, 55, 100 & 200 

- Prune 25% more of initial FC layers [right plot] 
done in 5 steps of 5% @epochs 5, 30, 80, 120 & 180 

➡ Iterative pruning and retraining does not 
significantly degrade learning at the level 
tested here, and may improve it! 

➡ Similar behaviour observed when pruning 
UNet layers (see back-up slides).
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Recent improvements: model pruning

Learning both Weights and Connections for Efficient Neural Networks

https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626


• Magenta circles: 
‣ Results from nominal model with FP 

32 and no pruning  

‣ Lower point used for comparing with 
performances after pruning  

• Green square: 
‣ pruning 20% of FC layers almost 

indistinguishable from nominal model 

• Cyan square: 
‣ pruning 50% of FC layers & about 

half of UNet layers degrades 
marginally the model fidelity   

➡ Very encouraging results 
regarding capability to scale 
down model size to cope 
with constraints in trigger!
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Recent improvements: model pruning



• Key aspects of ATLAS application: 
‣ Similar approach based on 

the KDE-to-hist model 
developed for LHCb 

‣ Analytical approach  to 
compute KDEs from 
reconstructed tracks 

‣ Tested two DNNs: UNet 
and UNet++ (using 
denser skip connections) 

‣ Example of predicted 
and target distributions 
overlaid on top of the 
KDE_A input feature 
(CPU intensive 
computation)
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PV-finder in ATLAS



• Performances 
‣ Using HL-LHC  ATLAS simulation with  
‣ Comparing UNet and UNet++ to default algorithm: 

AMVF (Adaptive Multi Vertex Finder) 

• Vertex separation & resolution: 
‣ longitudinal separation, , between 

pairs of all nearby reconstructed PV 

‣ : half-width at the half-depth of the dip 

➡ Better vertex resolution compared to AMVF 

tt < μ > = 60

Δzvtx−vtx

σvtx
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PV-finder in ATLAS



• Performances 
‣ Using HL-LHC  ATLAS simulation with  
‣ Comparing UNet and UNet++ to default algorithm: 

AMVF (Adaptive Multi Vertex Finder) 

• Vertex classification 
‣ Four categories of vertex depending on :

tt < μ > = 60

σvtx
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PV-finder in ATLAS



• Performances 
‣ Using HL-LHC  ATLAS simulation with  
‣ Comparing UNet and UNet++ to default algorithm: 

AMVF (Adaptive Multi Vertex Finder) 

• Efficiency:  
Number of truth vertices assigned to reconstructed 
vertices as clean or merged divided by the total number 
of reconstructable truth vertices 

• False positive rate:  
Average number of predicted vertices not matched 
to any truth vertex 

➡ UNet++ performances are comparable to AMVF 
➡ Validation of the PV-finder approach, even without hyper parameter optimisation 

tt < μ > = 60
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PV-finder in ATLAS



LHCb: continuous improvements with refined models 
‣ Demonstrated an “end-to-end” tracks-to-hist model outperforms similar KDE-to-hist models 
‣ Studied model “downsizing”: 

- reducing weights precision from FP32 to FP16 arithmetic only slightly degrades model accuracy 
- reducing number of weights (50% pruned model) marginally degrades model accuracy 

‣ We plan to instantiate the existing tracks-to-hist inference engine inside Allen, the GPU-resident first level trigger 
- above studies will be used to optimize model fidelity on one hand versus memory footprint and number of 

calculations/throughput on the other 

ATLAS: very promising first approach [ATL-PHYS-PUB-2023-011] 
‣ Demonstrated a proof-of-principle KDE-to-hist model 

- vertex resolution improvement by 2 w.r.t default AMVF 
- efficiency and false positive rate are comparable to AMVF 

‣ Further architecture optimization for ATLAS   
‣ Plan to implement in ACTS (perhaps with GPU implementation)   

Ongoing developments based on Graph Neural Network model enabling tracks to PV association  

PV-finder: Summary & Outlook
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Supplementary material
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• Inputs: from (LHCb Velo) tracks, i.e. closest to beam (x, y, z) position, 
slopes (tx, ty), (covariance matrix)  

• kernel maximum in (x, y) in each of the 4000, 100 µm wide z-bins. 
Assign it as z kernel value  

• Currently, this is done by a coarse manual search followed by a 
MINUIT minimization  

• Kernel: 
 
where G is the product of Gaussian p.d.f.s in x and y with mean (0, 0) 
and width given by IPx,y uncertainties. Those are heuristic with 
proto-tracking. 

KDE generation method
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• Symmetric cost function: low FP but low efficiency 

• Adding asymmetry term controls trade-off for FP vs. efficiency  

Cost function
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U-Net (KDE-to-hist) model
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CNN layers + 
ReLu activations

Skip connexions

Down-sampling 
operations 

Up-sampling 
operations 

Softplus



- [Left]    Pruning 1st  UNet layer (after 50% pruning of FC layers)  

- [Right] Pruning 2nd UNet layer (after pruning 1st UNet layer)
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Recent improvements: pruning UNet weights

Reduced learning rate



- Allowing all the pruned weights to float during subsequent training,  
the cost continues to drop, albeit slowly 
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Recent improvements: pruning UNet weights

Reduced learning rate


