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Analysis pipeline at the LHC
Lots of (also ML) components in our analysis pipeline 
But each optimized separately and downstream components are 
optimized based on the steps prior to it
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Theory

Data

Particles Analysis Result



e.g. jet flavour-tagging can only be optimized after tracking, but we rarely 
re-optimize tracking for flavor tagging or jet classification

Analysis pipeline at the LHC
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Tracking FTAGFeatures
Theory

Data

Particles Analysis Result

[arXiv:2202.03772]



The optimization of the sensitivity is primarily the job of the analysis, 
given a fixed reconstruction - mostly common for all analysis 

Particles Analysis ResultReconstructionRaw Data

Analysis pipeline at the LHC
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S/B

Optimize Optimize



Particles Analysis ResultReconstructionRaw Data

Features Head ResultFoundation modelRaw Data
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Pre-trained on a large dataset

Modern ML with Foundation Models
ML and HEP setups are fortunately very aligned 
Also often split in two parts, but key difference is that backbone can be fine-tuned w/ 
gradient descent

fine-tuned on small labeled dataset

Q: Could this workflow also work in HEP?
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DeepSets Result
Transformer 

(ParT)[2]

A toy end-to-end Analysis
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[1] 
Final state with Higgs/

QCD Jets

X → HH → bb̄bb̄

Jet representation

Jet representation

Jet representation

Jet representationXbb S/B

Backbone FM Analysis head

Jet constituents Xbb flavour tagging

[1]: Huilin Qu, Congqiao Li, and Sitian Qian, “Particle Transformer for Jet Tagging,” (2022), arXiv:2202.03772  
[2]: Duarte Javier, CMS open data [ http://opendata.cern.ch/record/12102 ]

http://opendata.cern.ch/record/12102


Backbone Jet representation

Q: Do high-dim 
embeddings hold more 
(useful) info than 
Xbb+HL Features?

Analysis would typically use frozen Xbb + HL Features (jet 4-momenta)
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DeepSets

Analysis head
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Jet representation

Jet representation

Jet representation

The head is trained for S/B discrimination with Jet representations 
from backbone as inputs 
Variable number of jets per event + Permutation Invariance -> DeepSets

S/B

ResultQ: Does fine-tuning the jet 
representation help?



DeepSetsTransformer

Frozen training
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Jet representation

Jet representation

Jet representation

Jet representation

Backbone trained on Xbb task and then frozen 
DeepSets + binary classification trained on S/B

Xbb S/B

Result



DeepSetsTransformer

Fine-tuned training
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Jet representation

Jet representation

Jet representation

Jet representation

Backbone pre-trained on Xbb task 
Then fine-tuned on S/B

Both S/B

Result



DeepSetsTransformer

From scratch training

11 Lukas Heinrich, Nicole Hartman, Matthias Vigl

Jet representation

Jet representation

Jet representation

Jet representation

No backbone pre-training 
Backbone + head trained from scratch on S/B

S/BS/B

Result



Architecture autonomy
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Scalar + HL Vector + HL Vector

Standard HEP

Inductive Bias 
 is all you need

ML-assisted HEP

Hope for sufficient 
stat

‘Hits to Higgs’

Frozen

Fine-tuned

From scratch



Results
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Well-known patterns from ML 
seem to hold also in HEP

• Fine-tuning workflow improves 
both performance & data 
efficiency (10-100x wrt standard 
hep)  

Standard HEP
Large data-
efficiency 
gains!

• Domain adaptation: Pre-
training on a different dataset 
(JetClass[3]) helps 

[3]: Huilin Qu, Congqiao Li, and Sitian Qian, “JetClass: A Large-Scale Dataset for Deep Learning in Jet Physics,” (2022). 

Backbone (pre-)trained 
on 22M jets

https://zenodo.org/records/6619768


Results
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Well-known patterns from ML 
seem to hold also in HEP

• Fine-tuning workflow improves 
both performance & data 
efficiency (10-100x wrt standard 
hep)  

• High-dim embeddings also seem 
to be useful in the frozen case

Standard HEP
Large data-
efficiency 
gains!

• Domain adaptation: Pre-
training on a different dataset 
(JetClass[3]) helps 

[3]: Huilin Qu, Congqiao Li, and Sitian Qian, “JetClass: A Large-Scale Dataset for Deep Learning in Jet Physics,” (2022). 

Backbone (pre-)trained 
on 22M jets

https://zenodo.org/records/6619768


Conclusions
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Fine-tuning workflow for end to end analysis 
works and is useful even for simple examples  

Compared to standard HEP approach: 

• 2x in background rejection 

• 10-100x in data efficiency 

• There might be more to gain in more complex 
topologies

full 10M evts

Link to the paper: arXiv:2401.13536 

Unsupervised backbone? Previous talk on “Masked Particle 
Modeling” by Samuel Byrne Klein

Backbone (pre-)trained 
on 22M jets

https://arxiv.org/abs/2401.13536
https://indico.cern.ch/event/1297159/contributions/5729217/
https://indico.cern.ch/event/1297159/contributions/5729217/
https://indico.cern.ch/event/1297159/contributions/5729217/
https://indico.cern.ch/event/1297159/contributions/5729217/


Backup
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From scratch training eventually surpasses frozen models, it’s just slow



18 Lukas Heinrich, Nicole Hartman, Matthias Vigl

From scratch training eventually surpasses frozen models, it’s just slow
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Xbb is learned when 
solving the downstream 
task even without 
actual jet labels
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High dim embeddings help for frozen jet representations 
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Dimensionality becomes less important when training end-to-end



Setup: CMS open data and ParT
Jets are clustered using the anti-
kT algorithm with R=0.8 from 
particle flow (PF) candidates 

Constituents features: 

• up to 100 PF per jet 

• 17 features per PF 

High-level features: 

• Jet 4-momenta 

• Xbb scores from ParT

Particle transformer for FTAG [arXiv:2202.03772]
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Training: QCD vs Higgs jets 

10M events / 22M jets 

CMS open data: Duarte Javier, [ http://opendata.cern.ch/record/12102 ]

http://opendata.cern.ch/record/12102


ParT
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[arXiv:2202.03772]



CMS open data
• CMS simulated dataset: 

• Sample with jet, track and 
secondary vertex properties 
for H(bb) tagging (http://
opendata.cern.ch/record/
12102) 

• meant for jet tagging, up to 
100 pf cand per jet - 17 feats 
each  

• signal samples: 11 mass points 
- M_x from 600 GeV to 4500 
GeV, bkg: QCD multijet 

• ’fat jets’ (fj) 4-momenta and 
(old) Xbb score
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10M events / 22M jets 

[ http://cms-results.web.cern.ch/cms-results/public-results/publications/BTV-16-002/ ]

http://cms-results.web.cern.ch/cms-results/public-results/publications/BTV-16-002/

