Finetuning Foundation Models for Analysis Optimization

arXiv:2401.13536

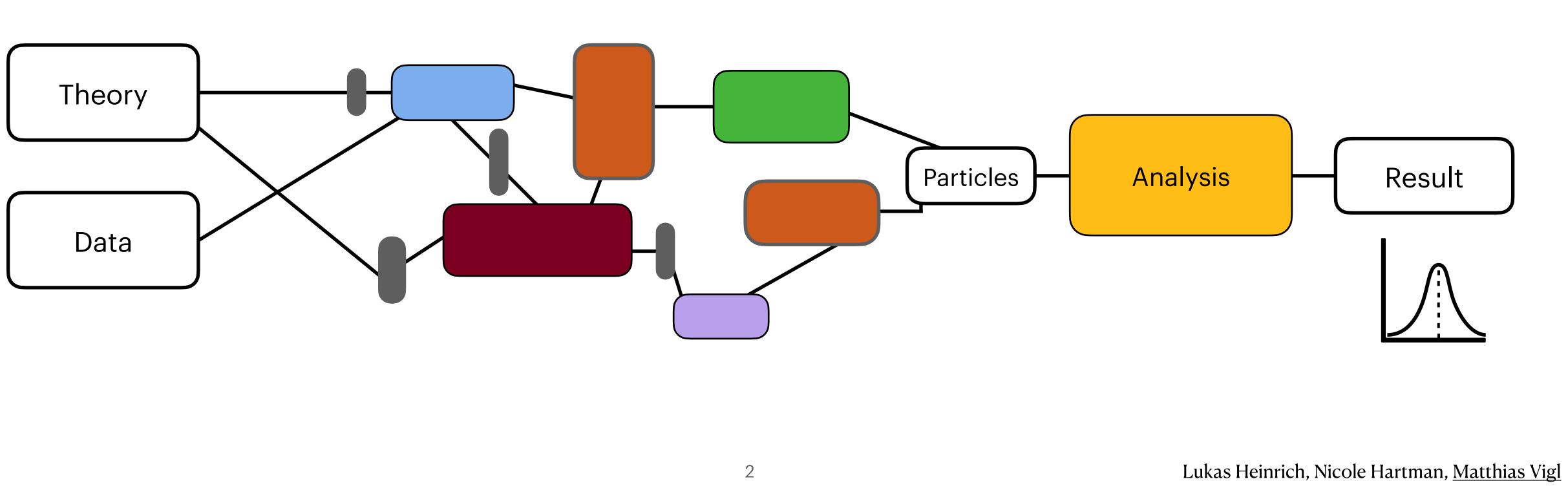
Lukas Heinrich, Nicole Hartman, <u>Matthias Vial</u>

6th IML Workshop, CERN 29.01.2024 – 02.02.2024

MAX-PLANCK-INSTITUT FÜR PHYSIK

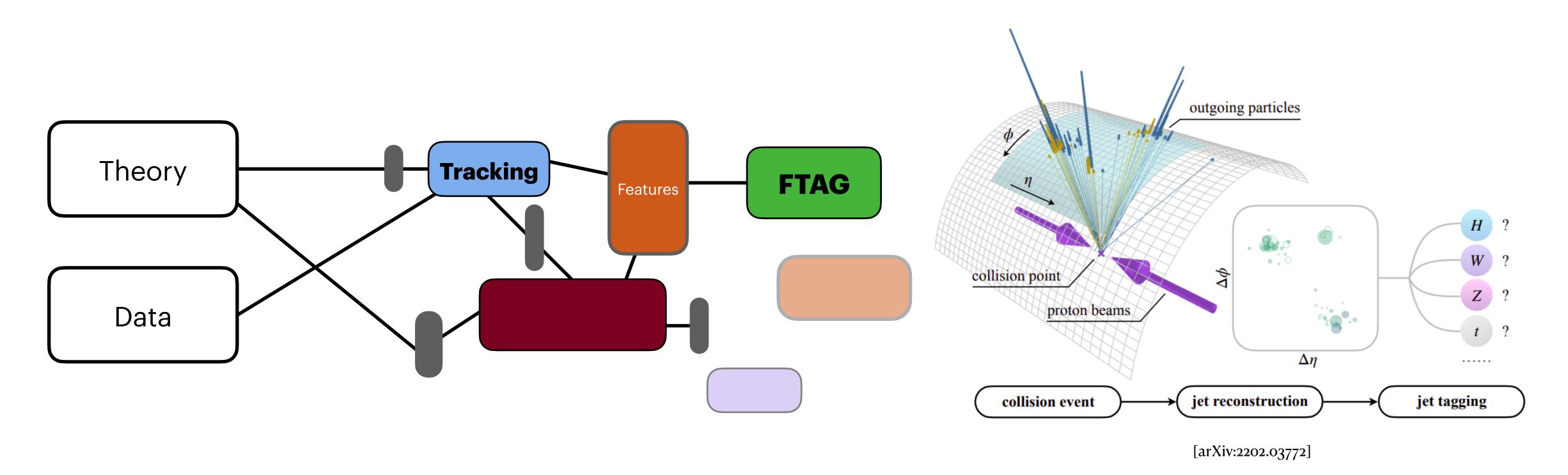
Analysis pipeline at the LHC

- Lots of (also ML) components in our analysis pipeline
- But each optimized separately and downstream components are optimized based on the steps prior to it



Analysis pipeline at the LHC

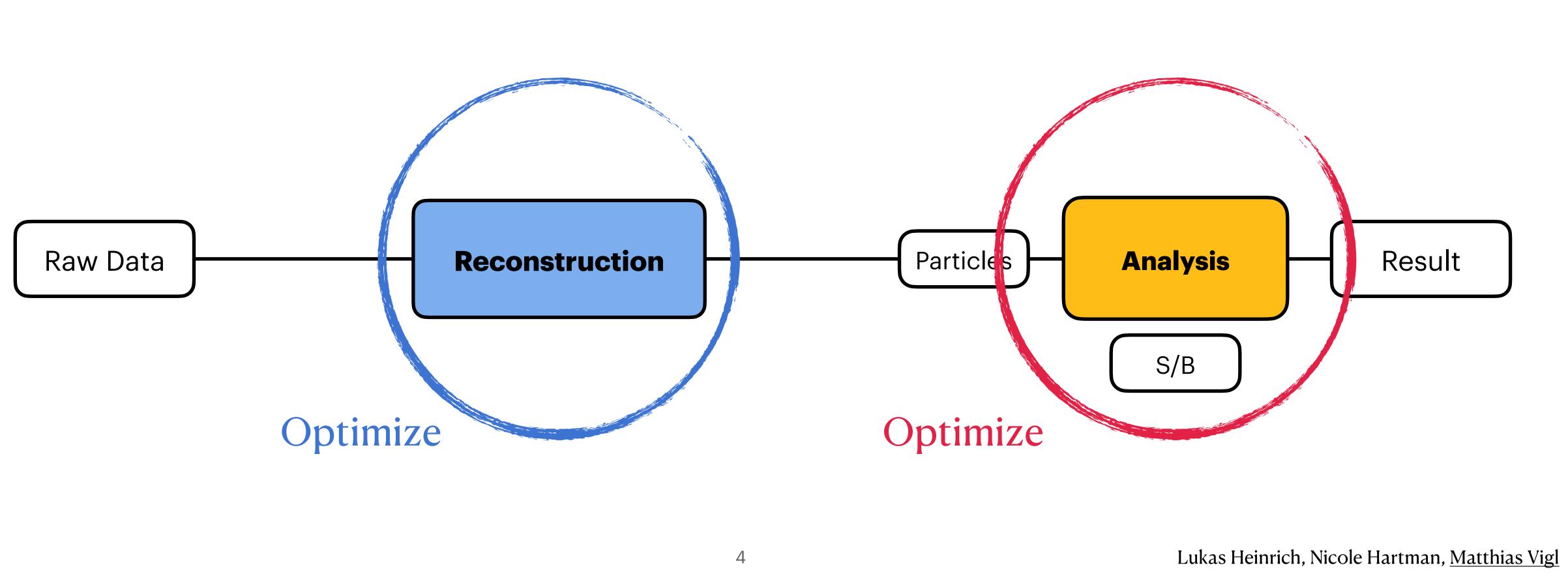
re-optimize tracking for flavor tagging or jet classification



e.g. jet flavour-tagging can only be optimized after tracking, but we rarely

Analysis pipeline at the LHC

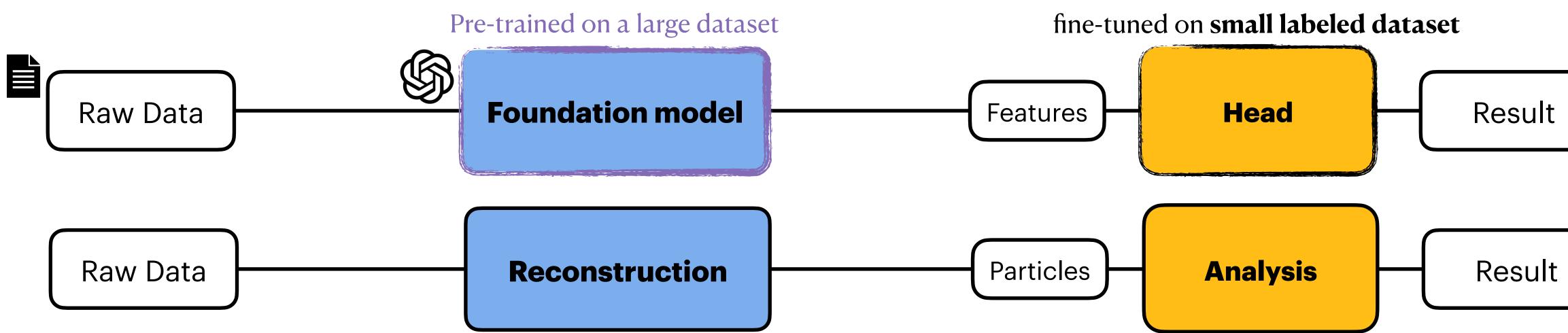
The optimization of the sensitivity is primarily the job of the **analysis**, given a fixed reconstruction - mostly common for all analysis



Modern ML with Foundation Models

ML and HEP setups are fortunately very aligned

gradient descent

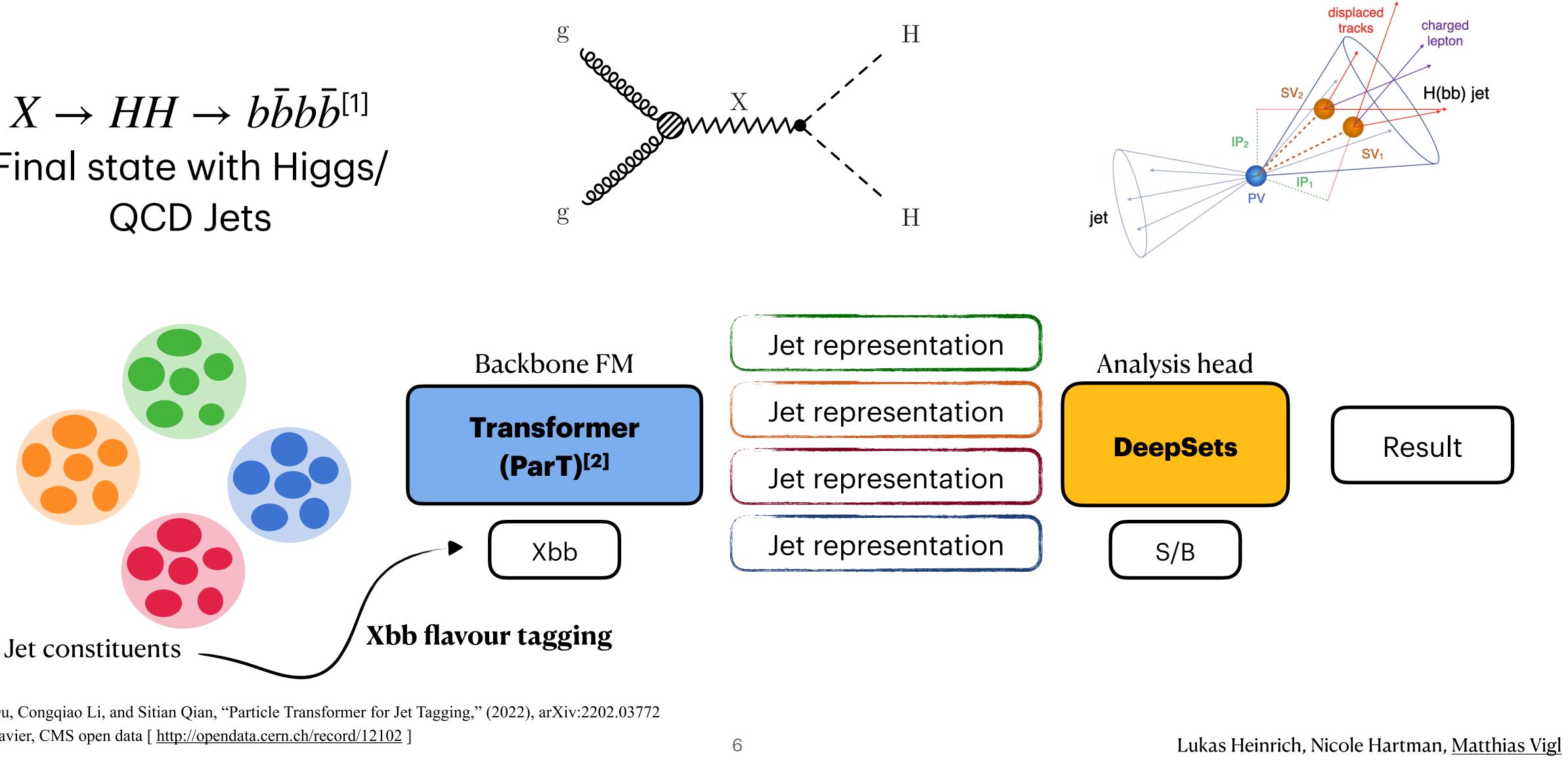


Also often split in two parts, but key difference is that backbone can be fine-tuned w/

Q: Could this workflow also work in HEP?

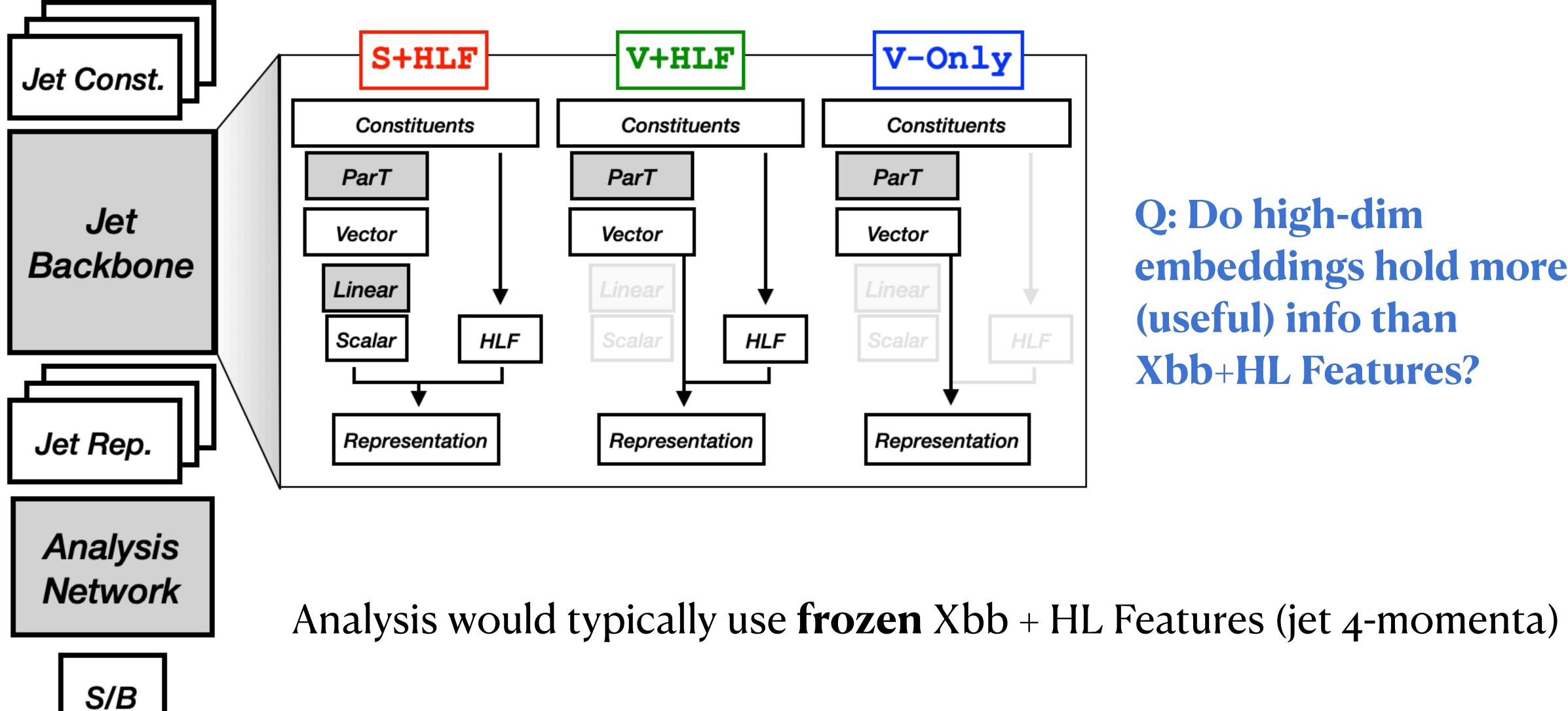
A toy end-to-end Analysis

$X \to HH \to b\bar{b}b\bar{b}^{[1]}$ Final state with Higgs/ QCD Jets



[1]: Huilin Qu, Congqiao Li, and Sitian Qian, "Particle Transformer for Jet Tagging," (2022), arXiv:2202.03772 [2]: Duarte Javier, CMS open data [<u>http://opendata.cern.ch/record/12102</u>]

Backbone Jet representation

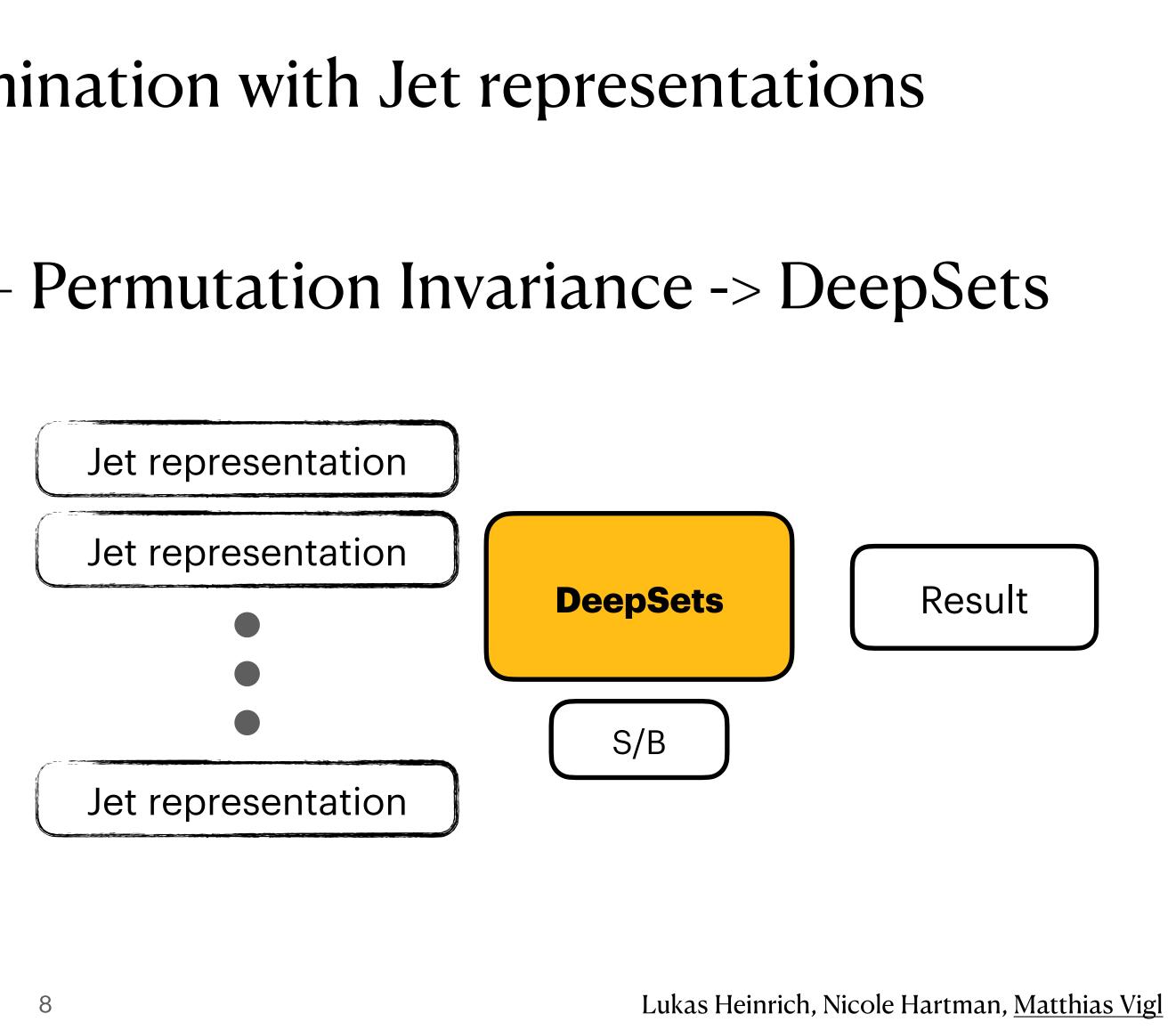


Q: Do high-dim embeddings hold more (useful) info than **Xbb+HL Features?**

The head is trained for S/B discrimination with Jet representations from backbone as inputs Variable number of jets per event + Permutation Invariance -> DeepSets

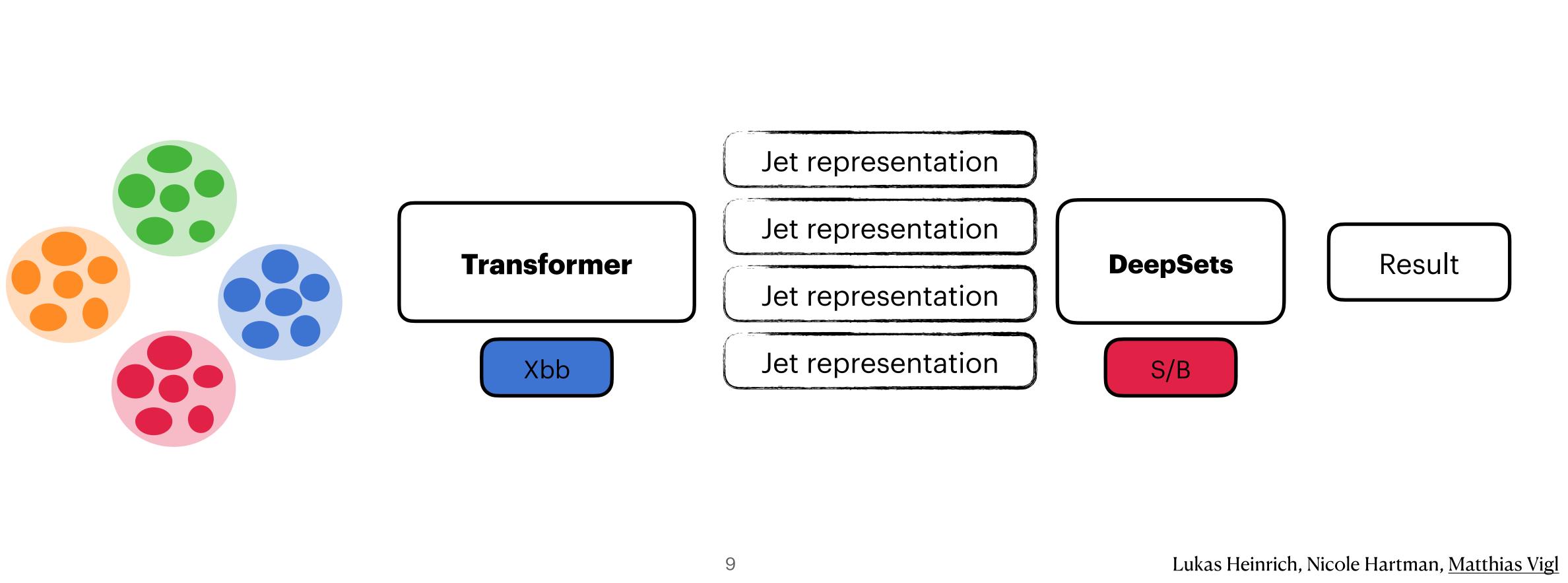
Q: Does fine-tuning the jet representation help?

Analysis head



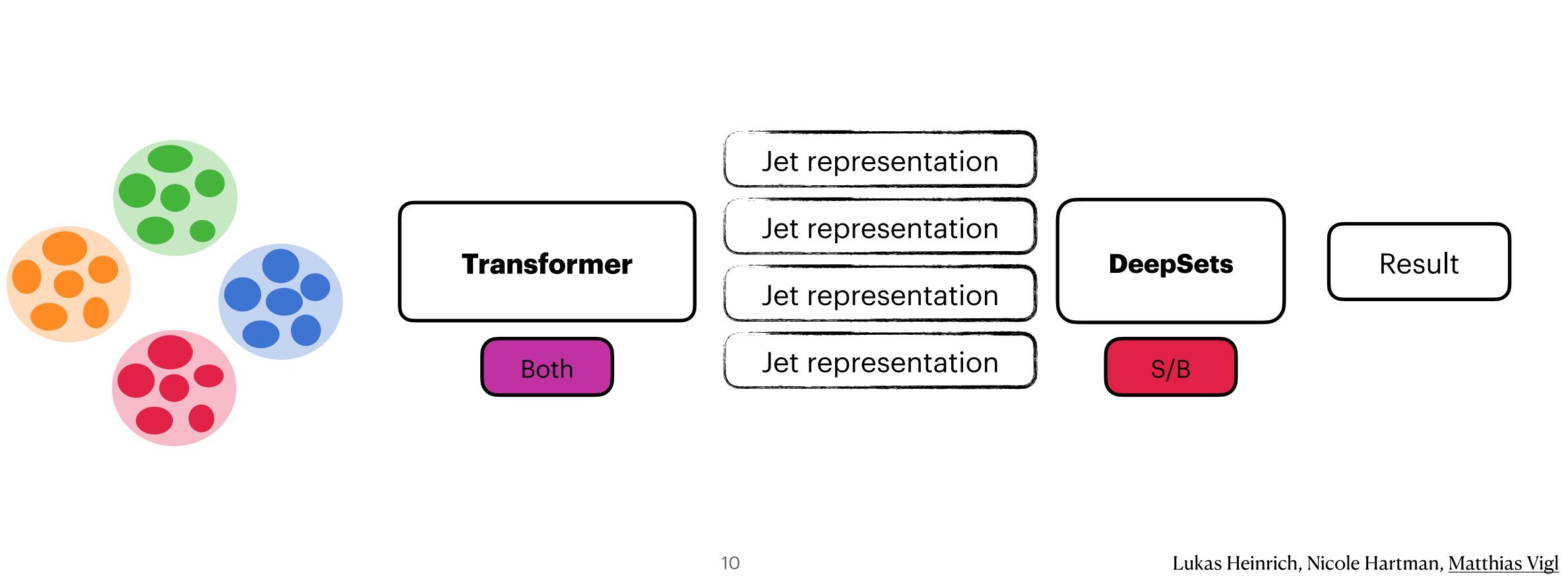
Frozen training

Backbone trained on **Xbb** task and then frozen DeepSets + binary classification trained on S/B



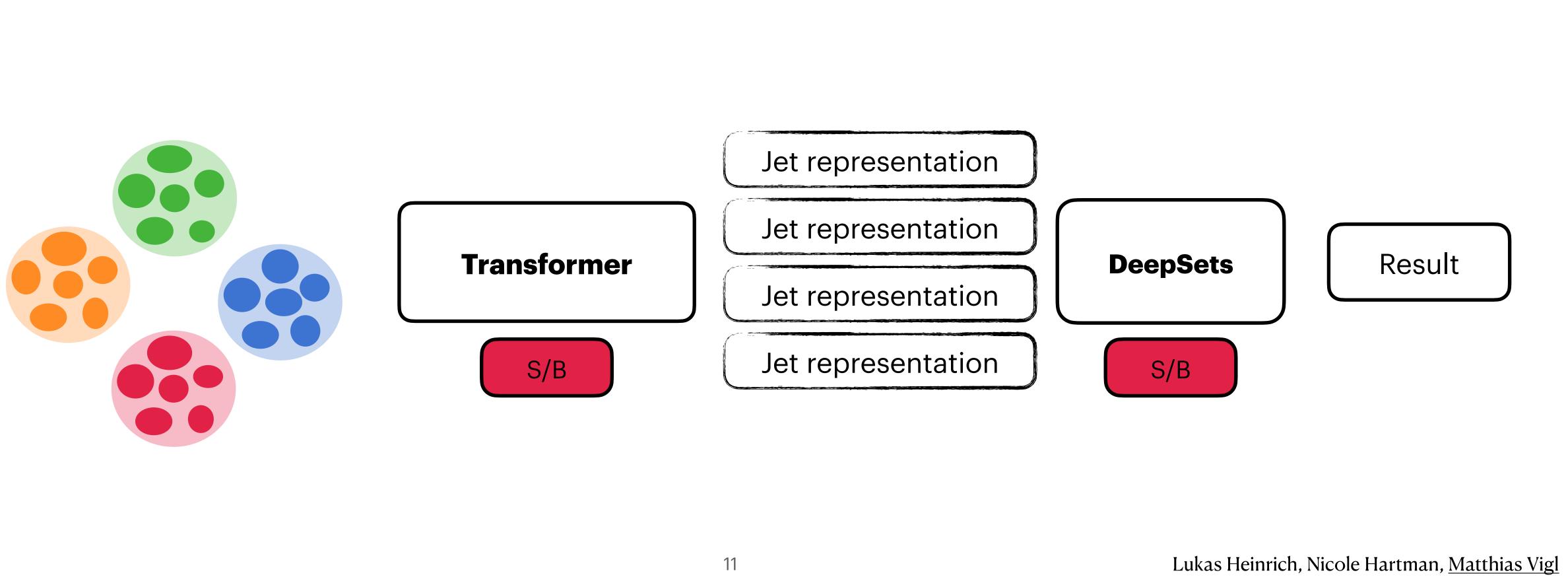
Fine-tuned training

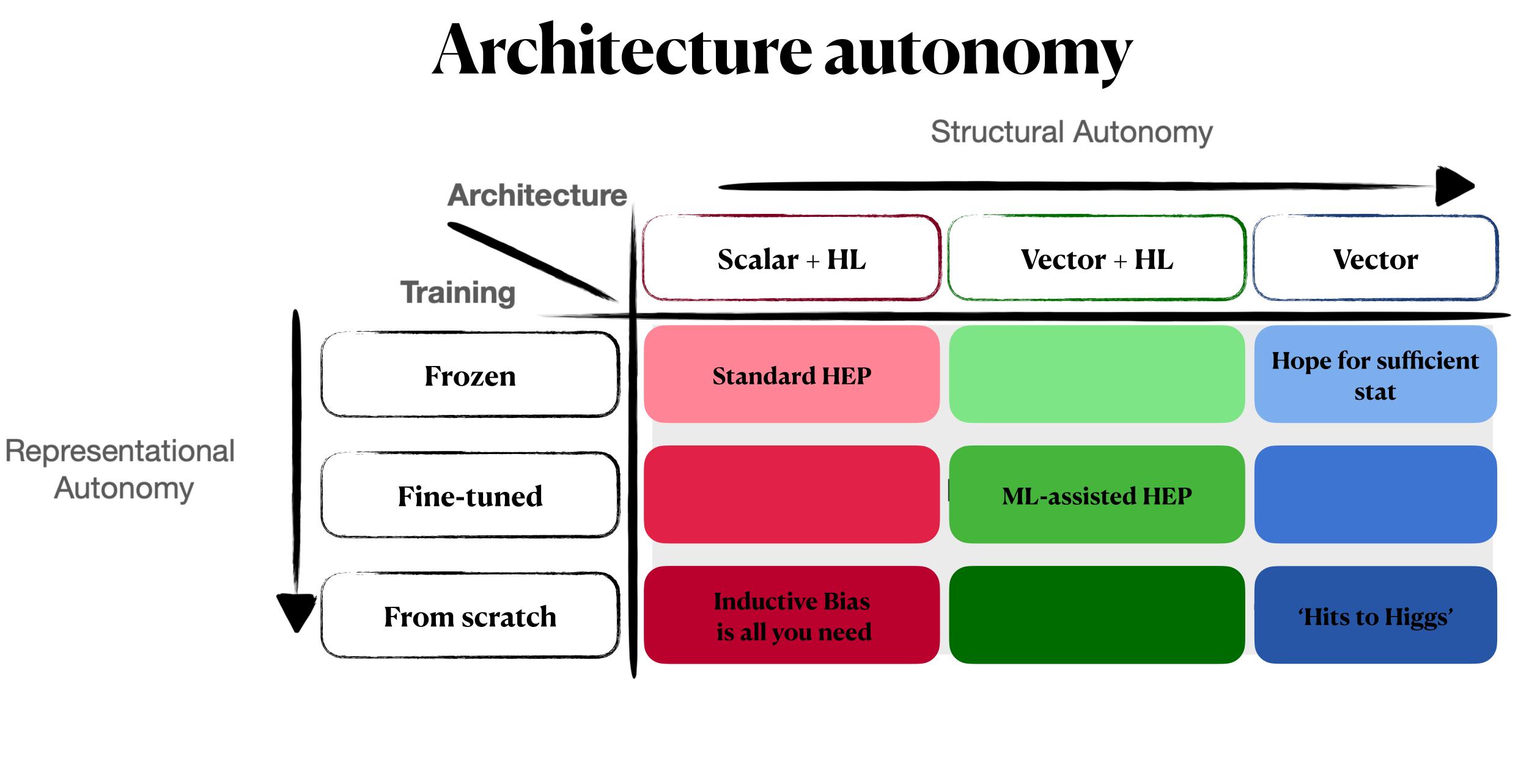
Backbone pre-trained on Xbb task Then fine-tuned on S/B



From scratch training

No backbone pre-training Backbone + head trained from scratch on S/B



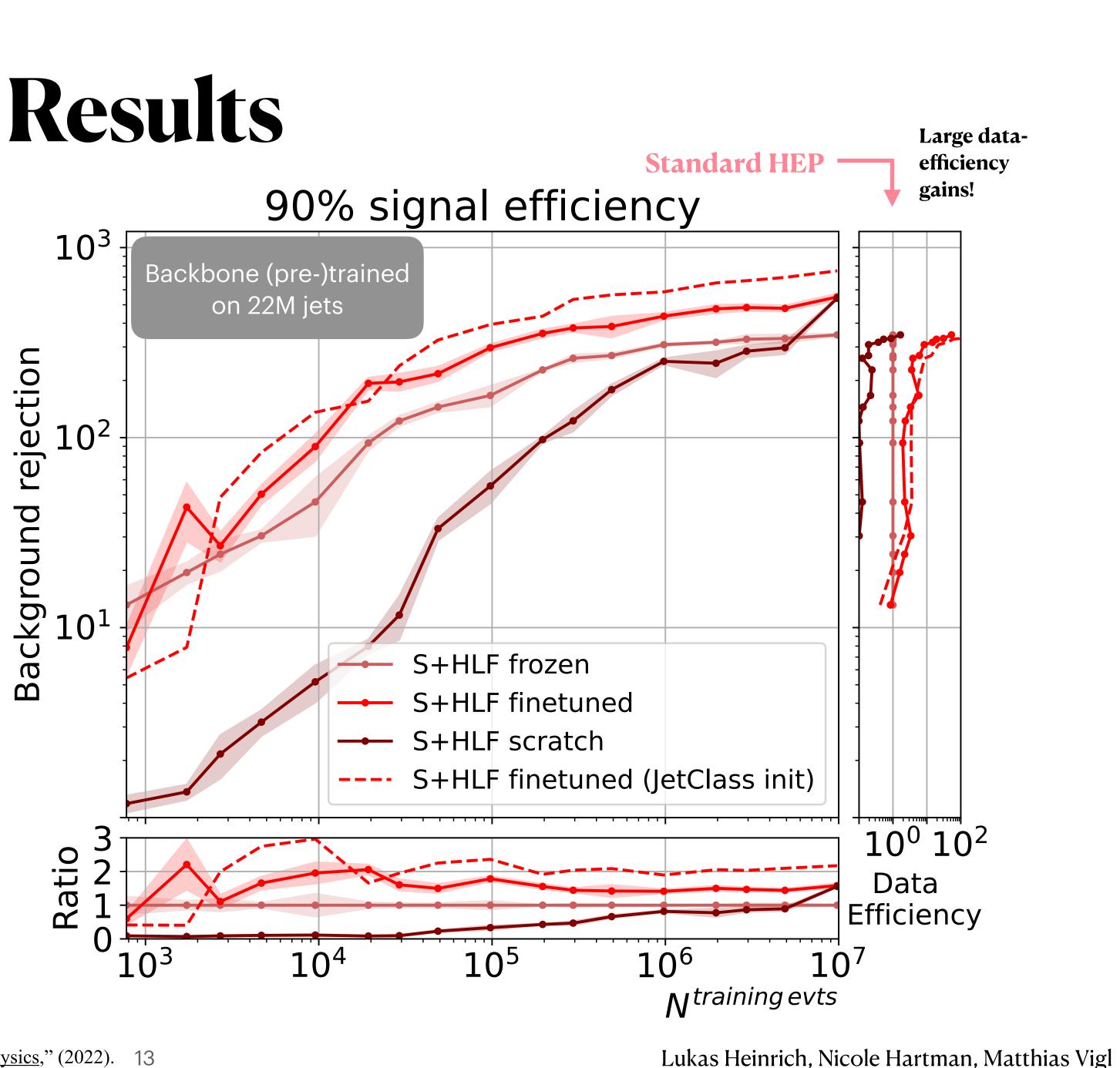


Well-known patterns from ML seem to hold also in HEP

• Fine-tuning workflow improves both performance & data efficiency (10-100x wrt standard hep)

Domain adaptation: Pre-training on a different dataset (JetClass^[3]) helps

[3]: Huilin Qu, Congqiao Li, and Sitian Qian, "JetClass: A Large-Scale Dataset for Deep Learning in Jet Physics," (2022). 13

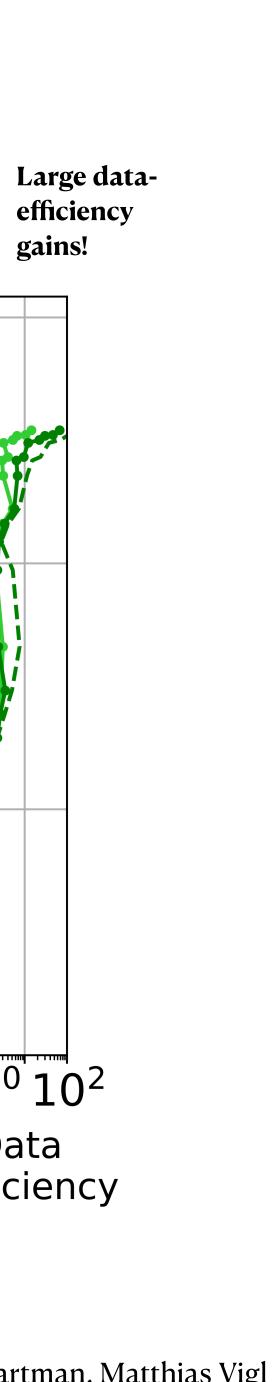


Well-known patterns from ML seem to hold also in HEP

- Fine-tuning workflow improves both performance & data efficiency (10-100x wrt standard hep)
- High-dim embeddings also seem to be useful in the frozen case
- **Domain adaptation**: Prelacksquaretraining on a different dataset (JetClass^[3]) helps

Ratio

[3]: Huilin Qu, Congqiao Li, and Sitian Qian, "JetClass: A Large-Scale Dataset for Deep Learning in Jet Physics," (2022). 14





Conclusions

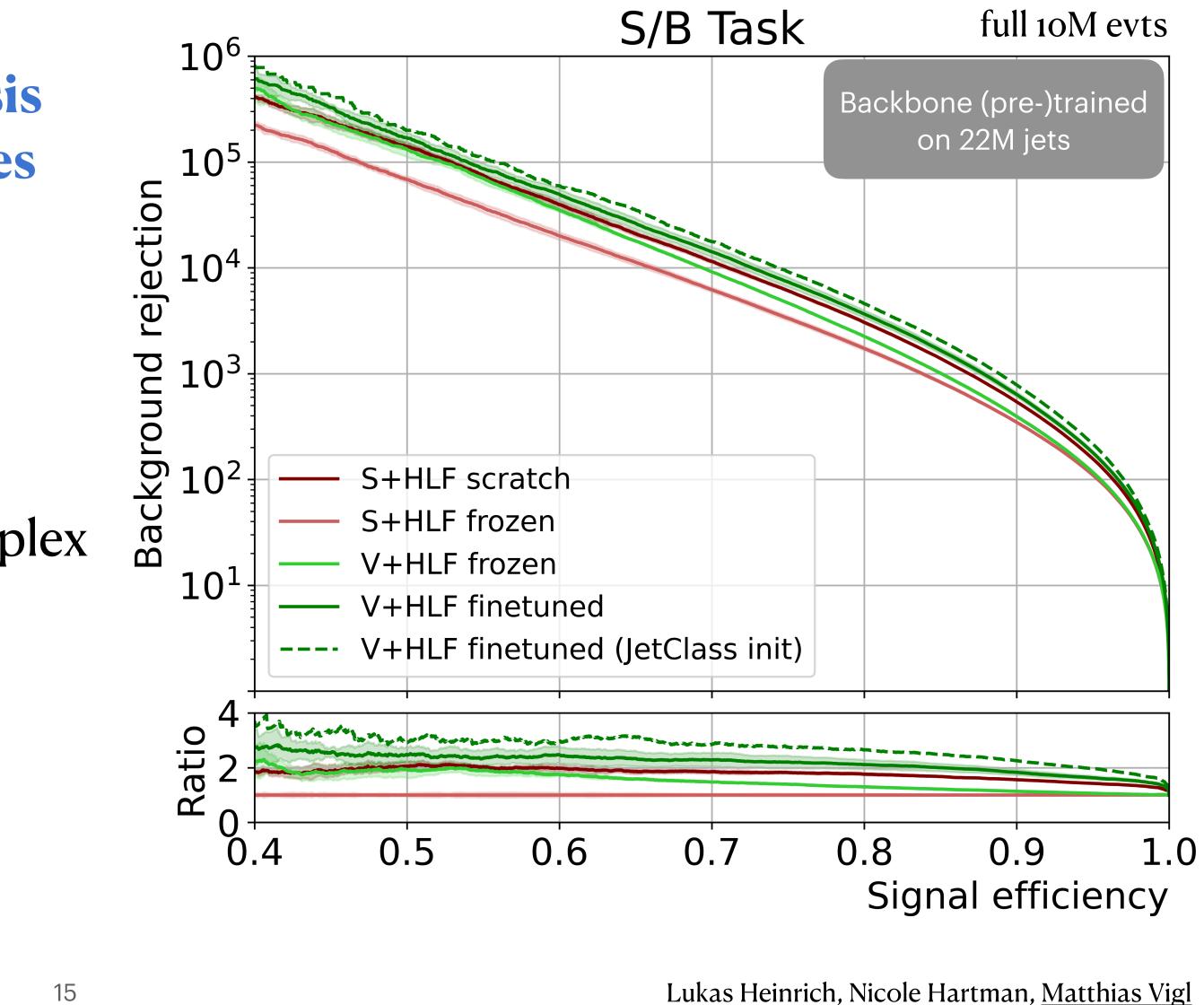
Fine-tuning workflow for end to end analysis works and is useful even for simple examples

Compared to standard HEP approach:

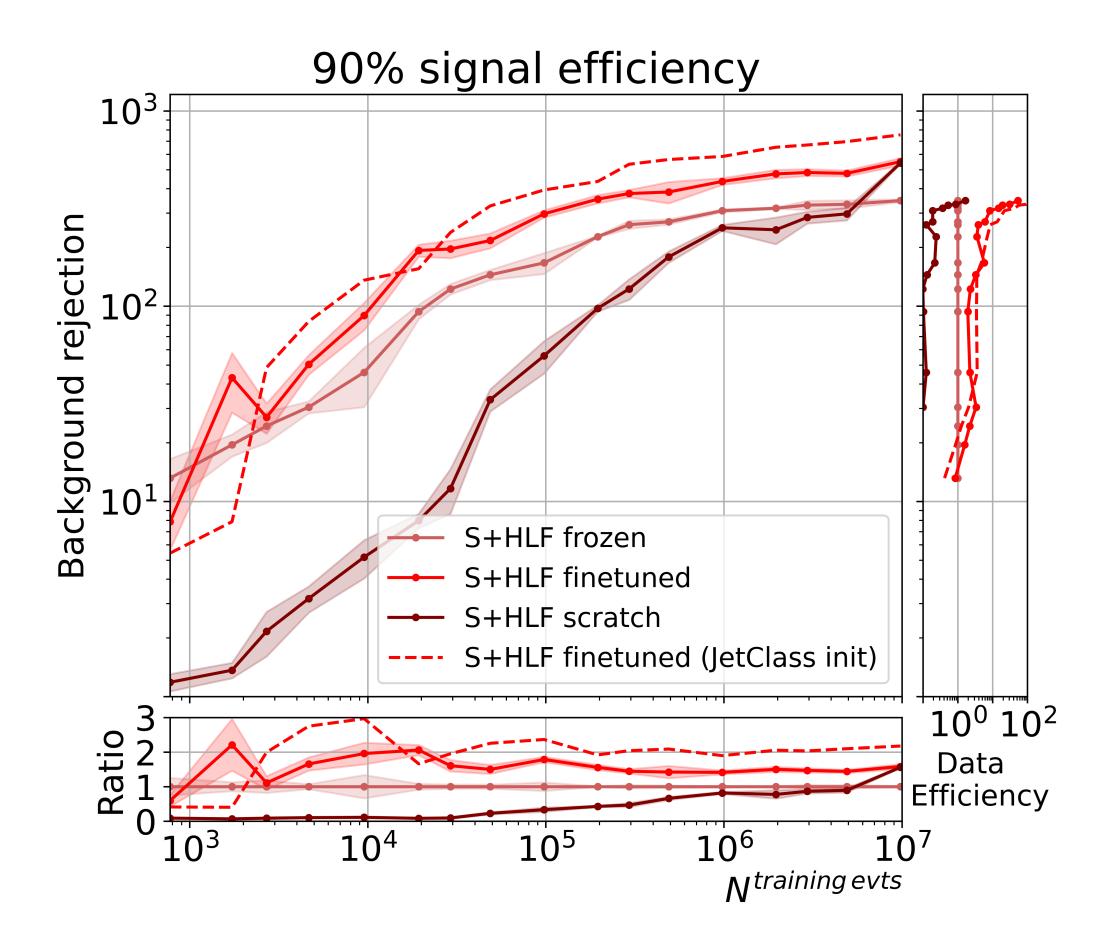
- 2x in background rejection
- 10-100x in data efficiency
- There might be more to gain in more complex topologies

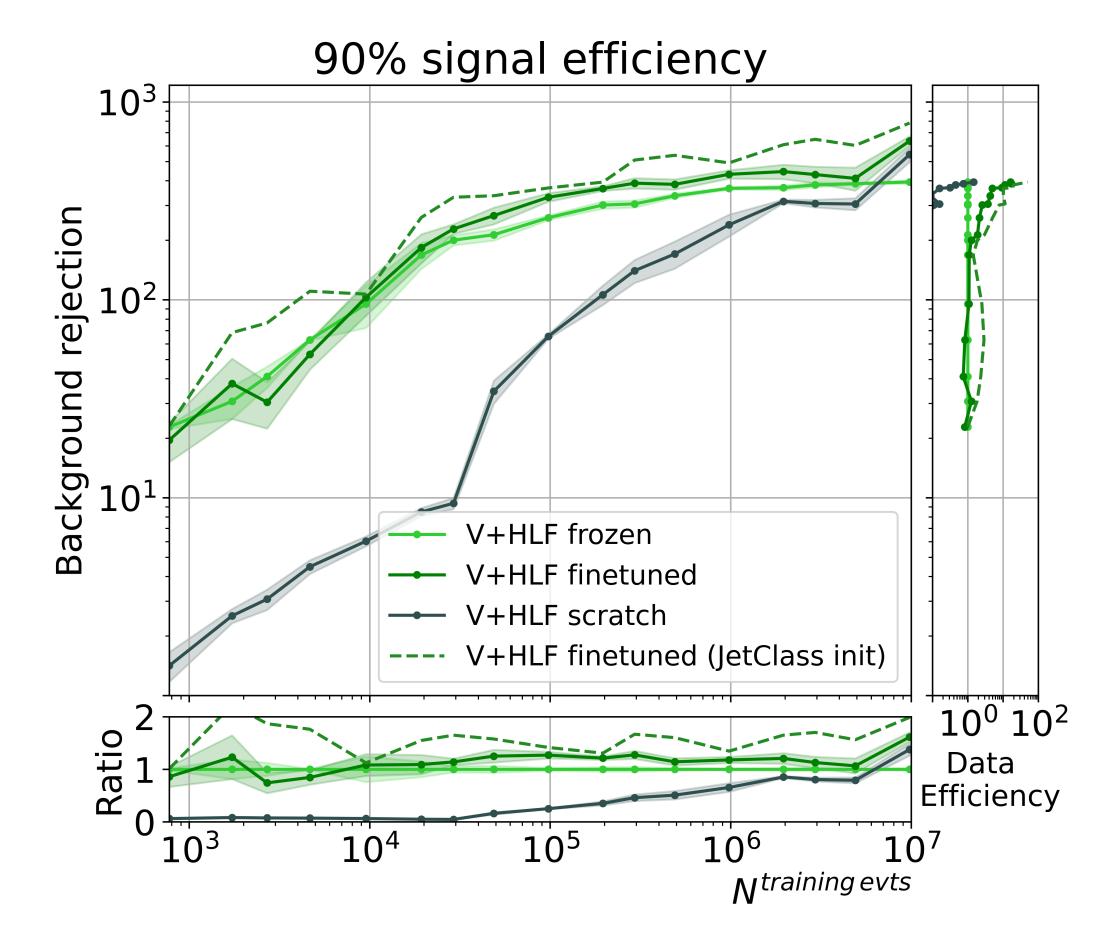
Link to the paper: **arXiv:2401.13536**

Unsupervised backbone? Previous talk on "Masked Particle" Modeling" by Samuel Byrne Klein

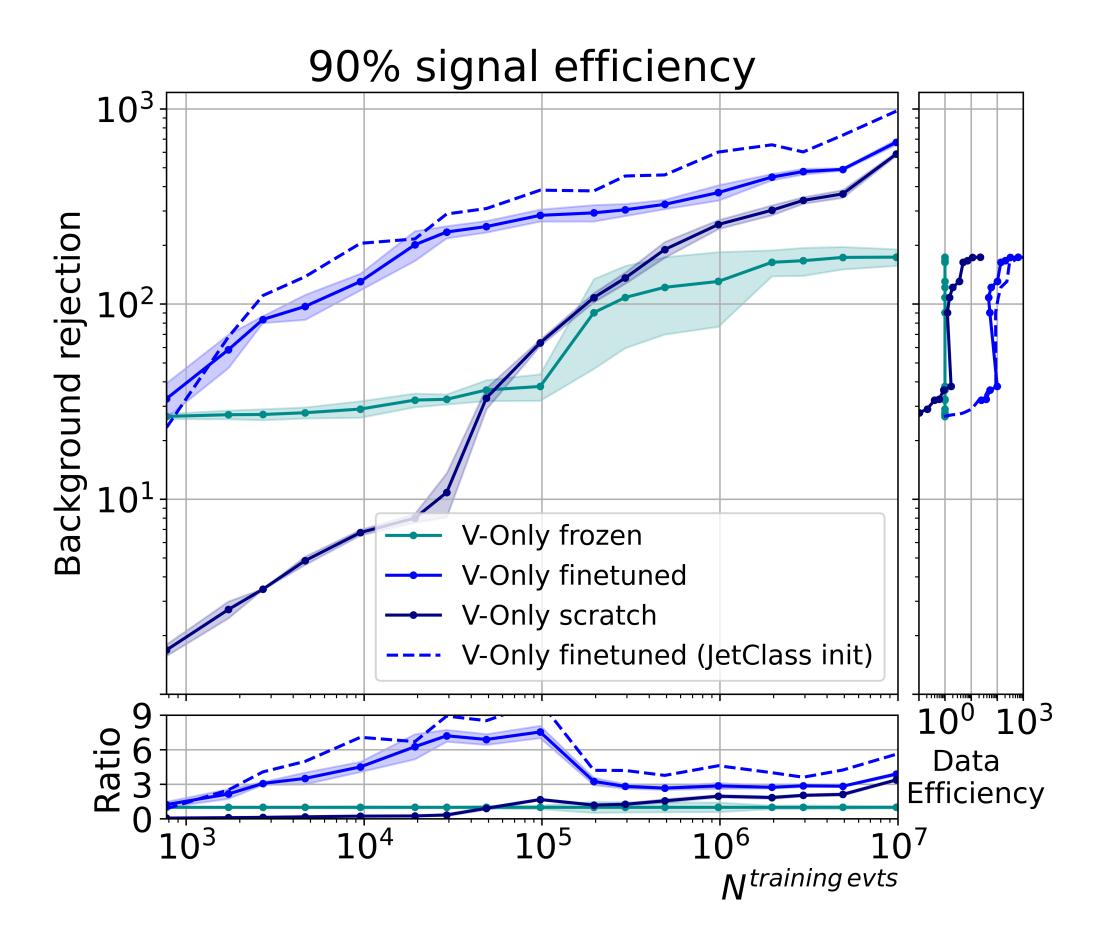


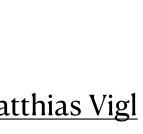
From scratch training eventually surpasses frozen models, it's just slow

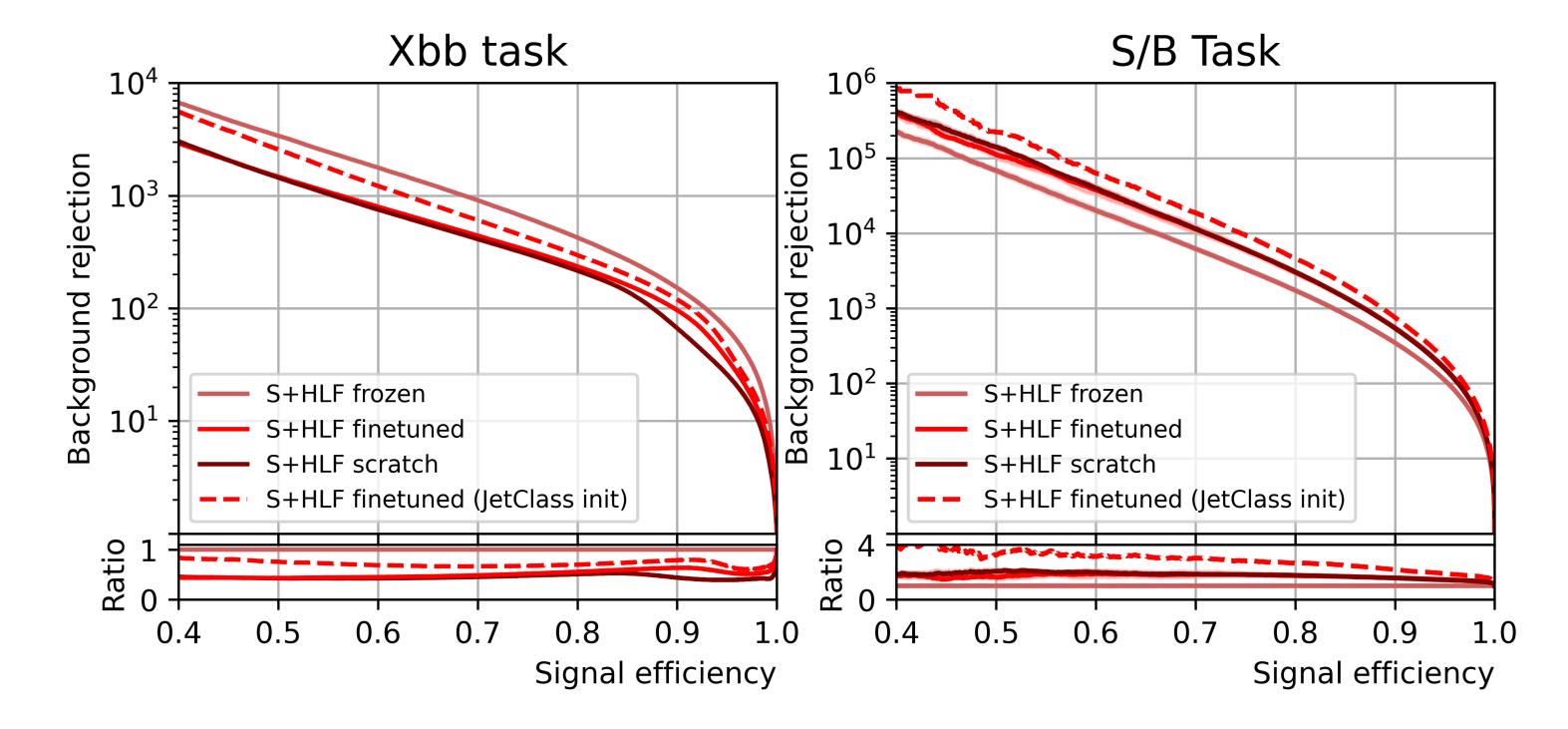




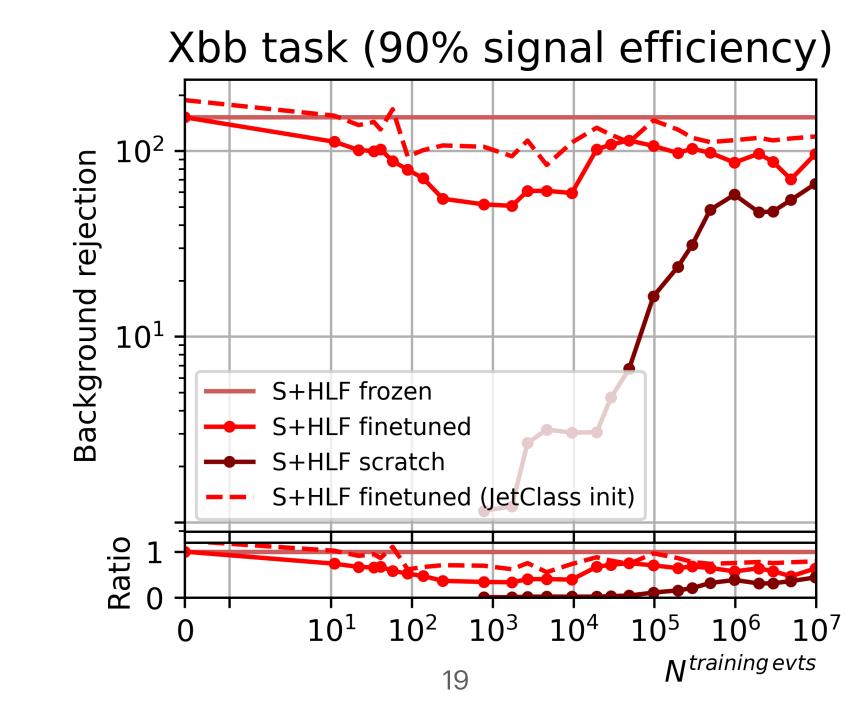
From scratch training eventually surpasses frozen models, it's just slow



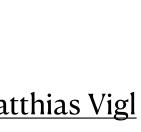




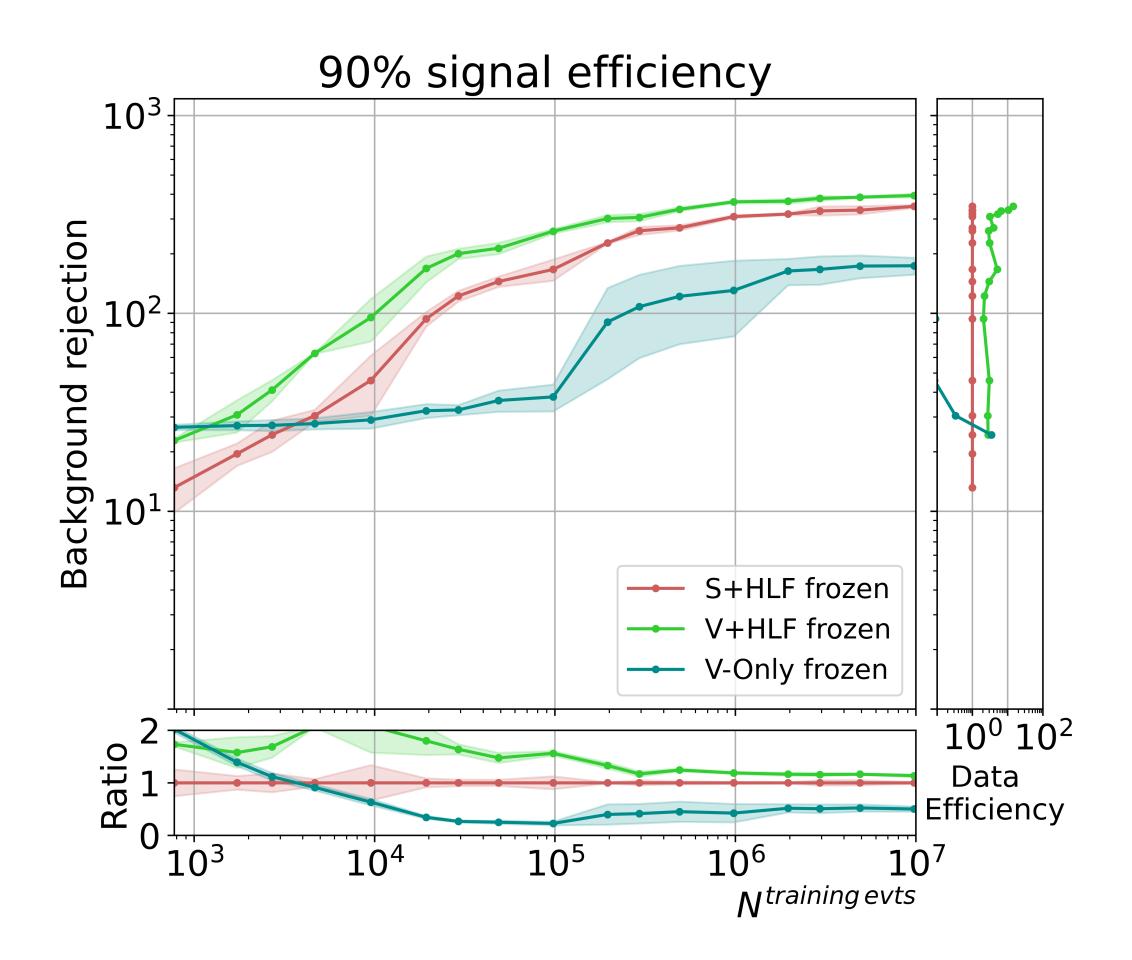
Xbb is learned when solving the downstream task even without actual jet labels

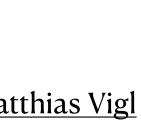


Lukas Heinrich, Nicole Hartman, Matthias Vigl

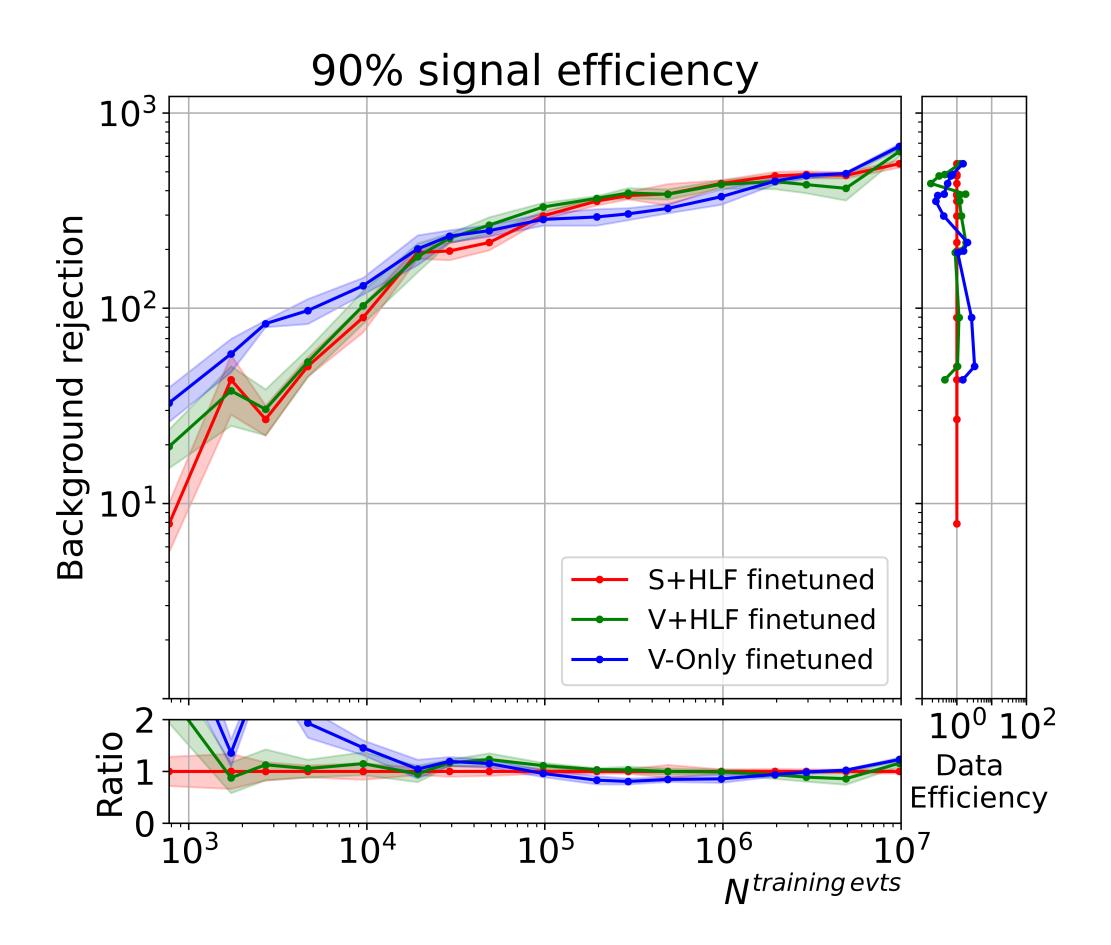


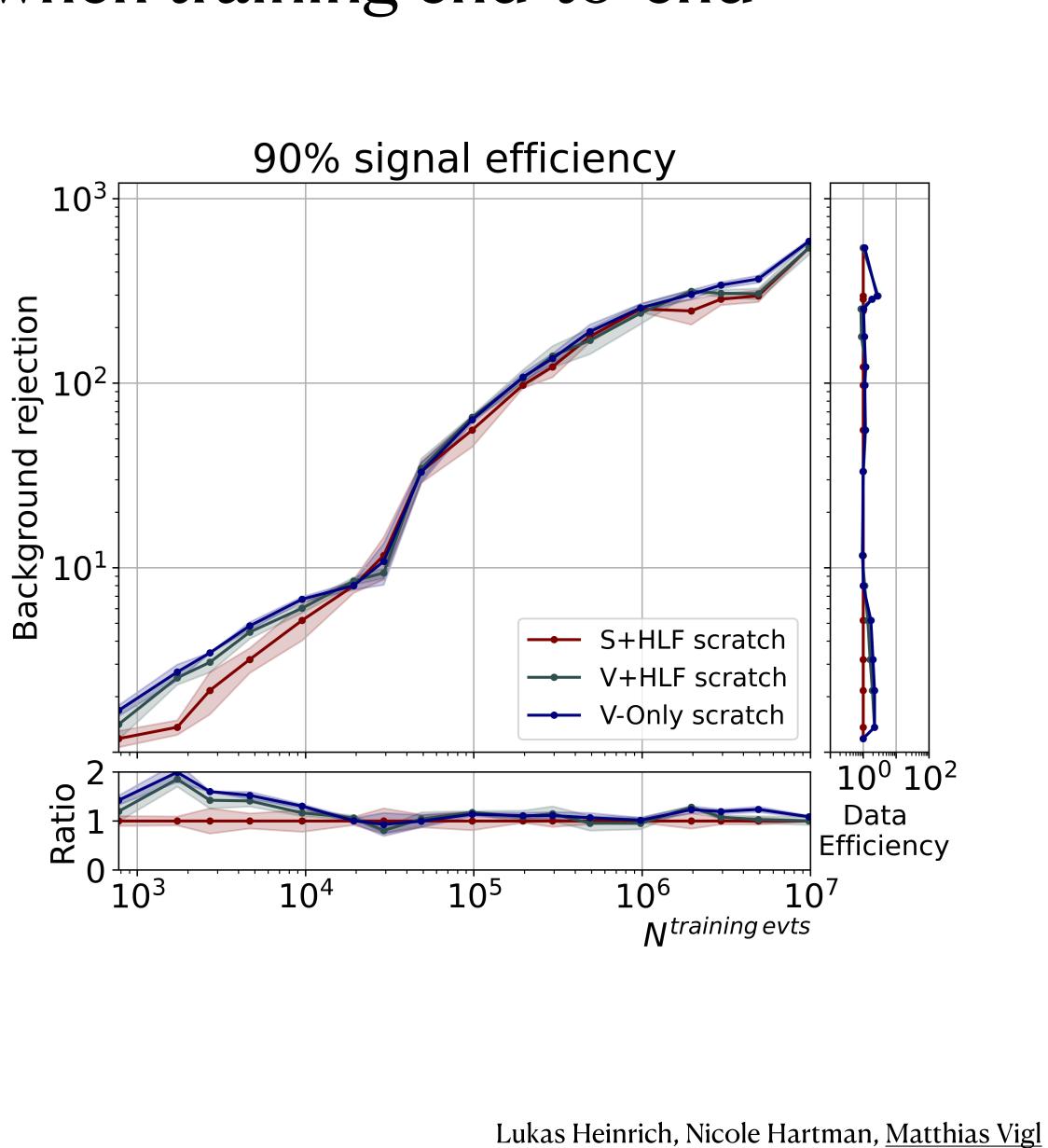
High dim embeddings help for frozen jet representations





Dimensionality becomes less important when training end-to-end





Setup: CMS open data and ParT

CMS open data: Duarte Javier, [http://opendata.cern.ch/record/12102]

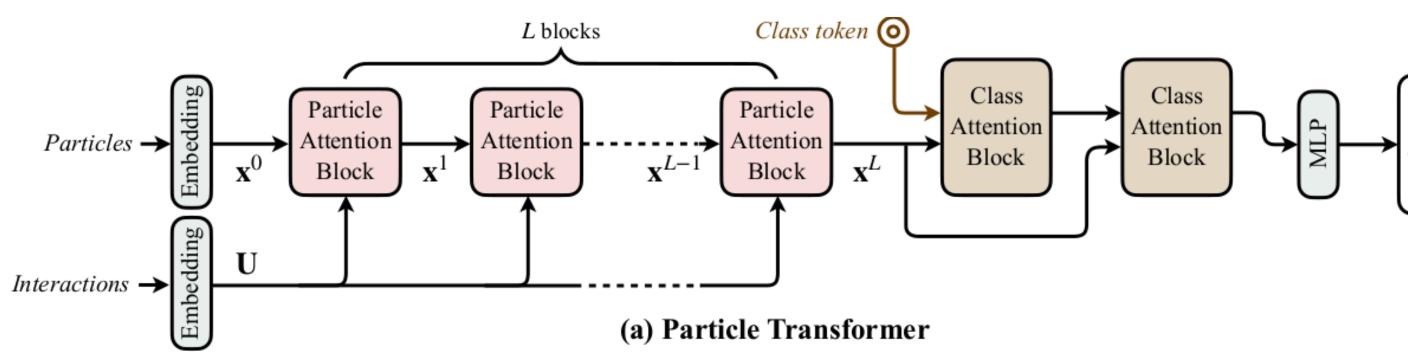
Jets are clustered using the antikT algorithm with R=0.8 from particle flow (PF) candidates

Constituents features:

- up to 100 PF per jet
- 17 features per PF

High-level features:

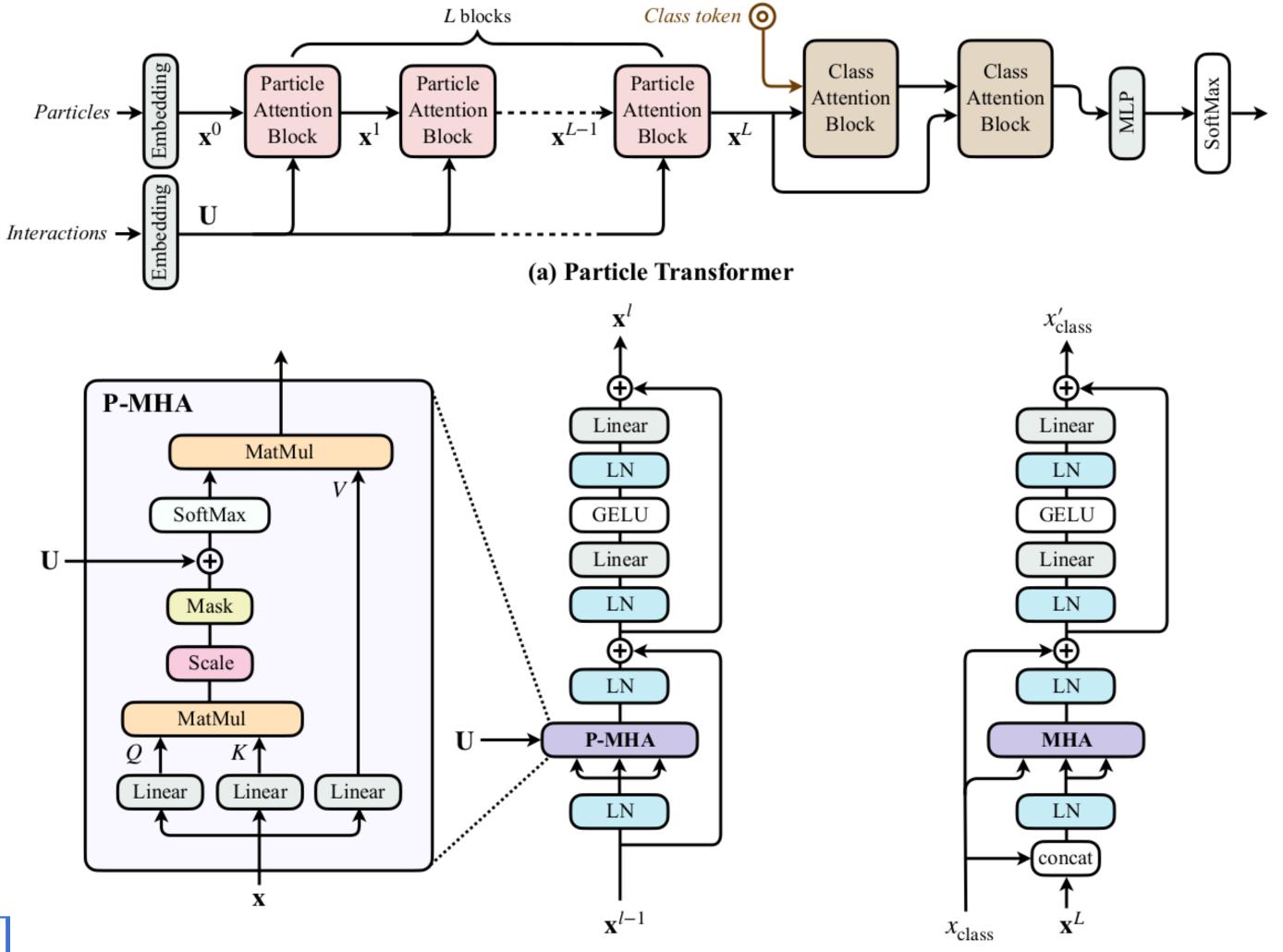
- Jet 4-momenta
- Xbb scores from ParT



Particle transformer for FTAG [arXiv:2202.03772] Training: QCD vs Higgs jets

10M events / 22M jets



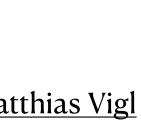


[arXiv:2202.03772]

(b) Particle Attention Block

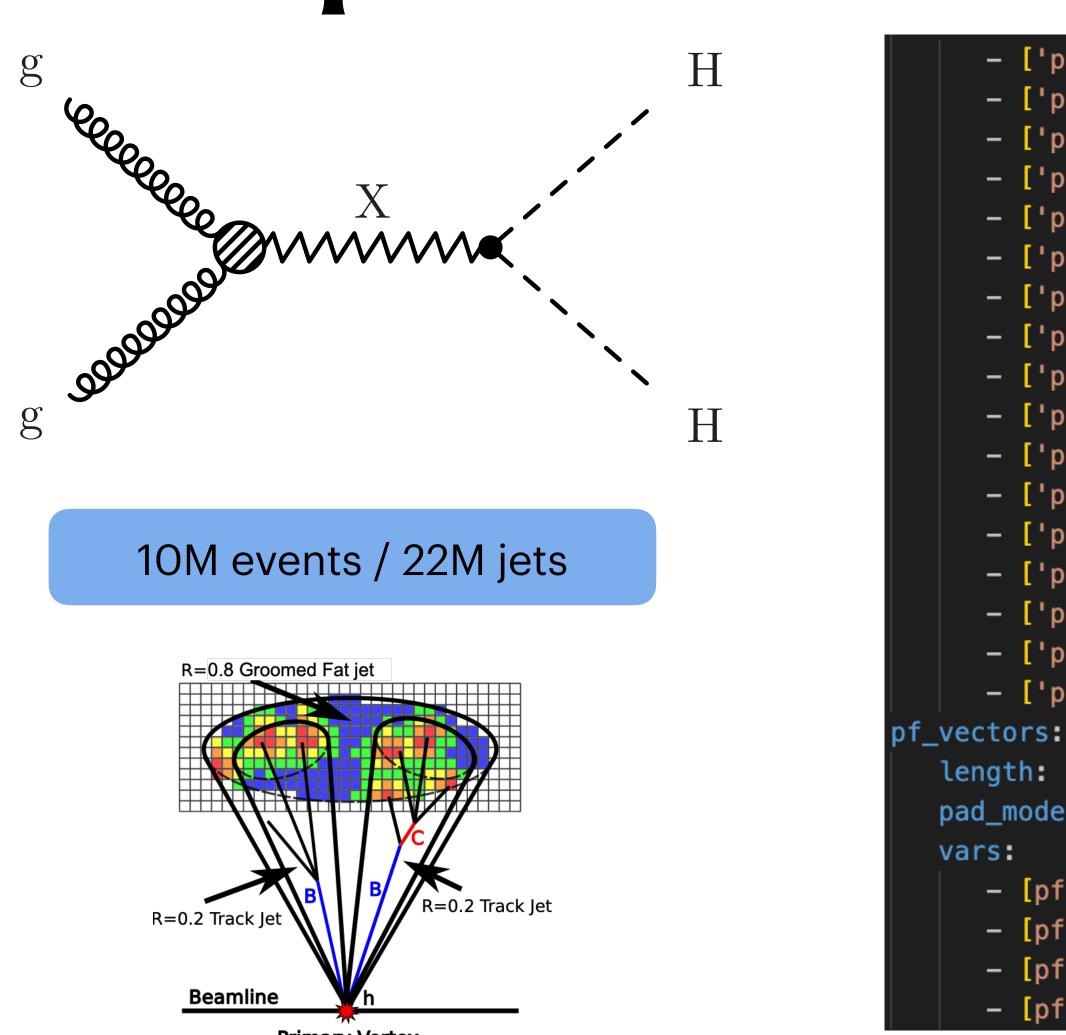
ParT

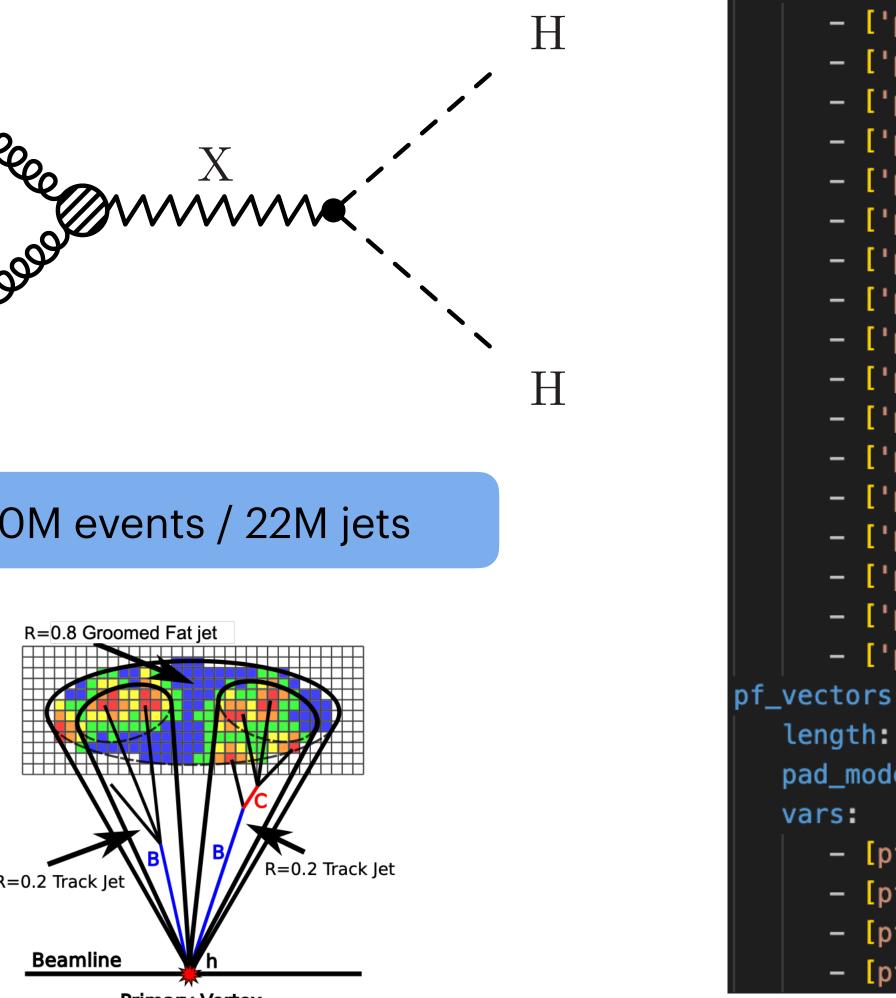
(c) Class Attention Block



- CMS simulated dataset:
- Sample with jet, track and secondary vertex properties for H(bb) tagging (http:// opendata.cern.ch/record/ 12102)
- meant for jet tagging, up to 100 pf cand per jet - 17 feats each
- signal samples: 11 mass points - M_x from 600 GeV to 4500 GeV, bkg: QCD multijet
- 'fat jets' (fj) 4-momenta and (old) Xbb score

[http://cms-results.web.cern.ch/cms-results/public-results/publications/BTV-16-002/]





CMS open data

Primary Vertex

['pfcand_pt_log', null] - ['pfcand_e_log', null] ['pfcand_logptrel', null] ['pfcand_logerel', null] ['pfcand_deltaR', null] - ['pfcand_charge', null] ['pfcand_isChargedHad', null] ['pfcand_isNeutralHad', null] ['pfcand_isGamma', null] - ['pfcand_isEl', null] ['pfcand_isMu', null] - ['pfcand_dz', null] ['pfcand_dzerr', null] - ['pfcand_dz', null] ['pfcand_dzerr', null] - ['pfcand_deta', null] - ['pfcand_dphi', null] length: 110 pad_mode: wrap [pfcand_px, null] [pfcand_py, null] [pfcand_pz, null] [pfcand_energy, null]

