

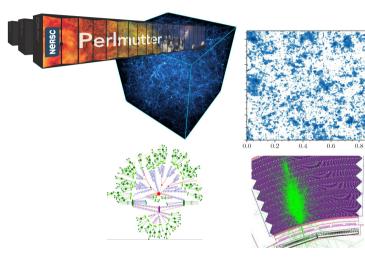
Fair Universe: Unbiased Data Benchmark Ecosystem for Physics

David Rousseau,

IJCLab-Orsay

with Paolo Calafiura, Ragansu Chakkappai, Yuan-Tang Chou, Sascha Diefenbacher, Steven Farrell, Aishik Ghosh, Isabelle Guyon, Chris Harris, Shih-Chieh Hsu, Elham Khoda, Benjamin Nachman, Benjamin Thorne, Peter Nugent, Mathis Reymond, David Rousseau, Ihsan Ullah,

Daniel Whiteson

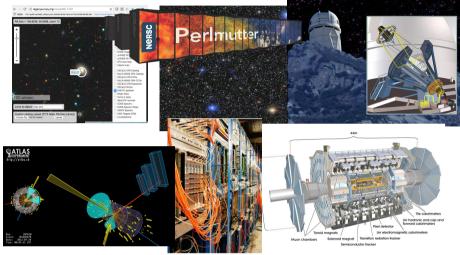

UNIVERSITY of WASHINGTON

Background on Fair Universe Project

- 3 year US Dept. of Energy, AI for HEP project. Aims to:
 - Provide an open, large-compute-scale Al ecosystem for sharing datasets, training large models, fine-tuning those models, and hosting challenges and benchmarks.
 - Organize a challenge series, progressively rolling in tasks of increasing difficulty, based on novel datasets.
 - Tasks will focus on measuring and minimizing the effects of systematic uncertainties in HEP (particle physics and cosmology).
- Broad team in HEP, ML and computing involved in several previous challenges and benchmarks for HEP (e.g. <u>HiggsML</u> and <u>TrackML</u>) and wider (e.g <u>NeurIPS competition track</u>, <u>MLPerf HPC</u>); as well as <u>Uncertainty aware learning in HEP</u>

Measuring and minimizing the effects of systematic uncertainties in HEP

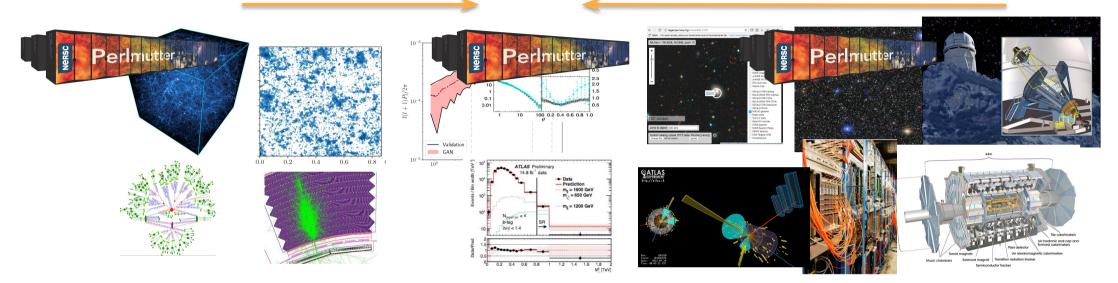
Bias and uncertainty in the fundamental sciences


Theory into Simulations

 High-resolution with detailed physics and instrument/ detector simulation

Summary statistics:

Perlmutter


- E.g. 2pt /3pt correlation: spatial distribution
- E.g. Masses of reconstructed particles

Exp/Obs reconstruction

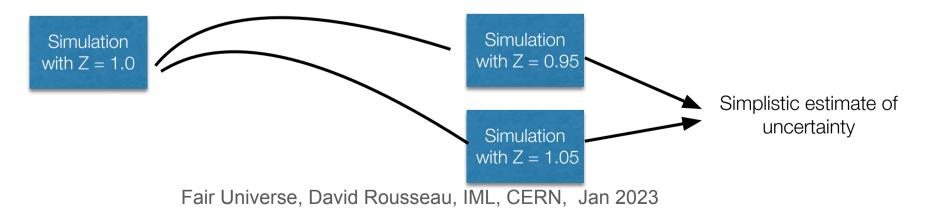
- Derive position of galaxies/stars and properties for catalogs
- Reconstruct particle
 properties

Bias and uncertainty in the fundamental sciences

Theory into Simulations

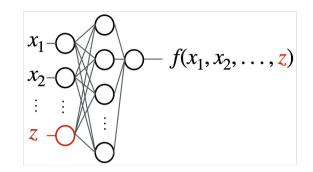
 Estimate Systematic Uncertainties (Z) **Exp/Obs reconstruction**

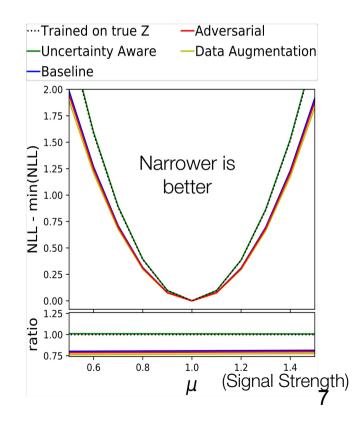
• Detector state Z=?


Differences between simulation and data can bias measurements

Bias and uncertainty in ML in the fundamental sciences

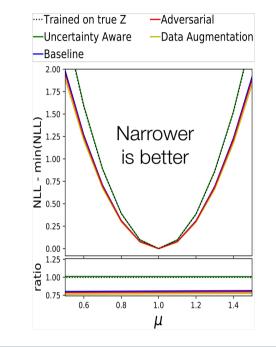
- ML methods in HEP are often trained based on simulation which has estimated systematic uncertainties ("Z")
- These are then applied in data with the different detector state Z=?


 Common baseline approach: Train classifier on nominal data (e.g. Z=1) and estimate uncertainties with alternate simulations. Shift Z and look at impact or perform full profile likelihood



6

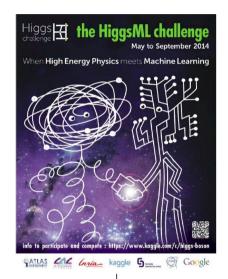
Increasingly sophisticated approaches

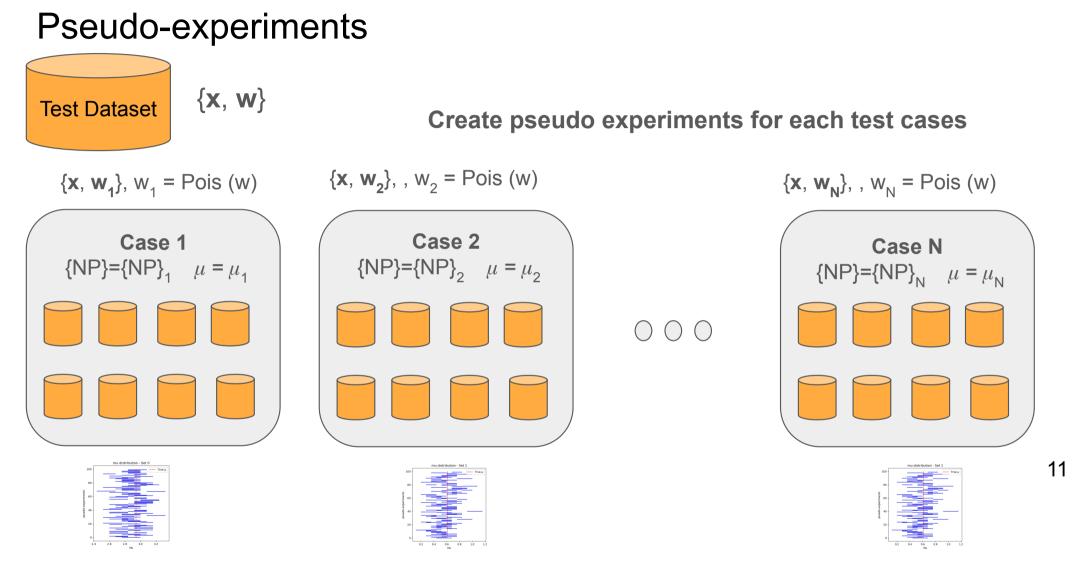

- Several focussed on decorrelation, e.g. augmentation; adversarial training; tangent propagation etc.
- "pivot" Louppe, Kagan, Cranmer : arXiv:1611.01046
- "Uncertainty-aware" approach of Ghosh, Nachman, Whiteson <u>PhysRevD.104.056026</u>
 - Parameterize classifier using Z
 - Measured on "Toy" 2D Gaussian Dataset and dataset from <u>HiggsML Challenge</u> modified to include systematic on tau-energy scale
 - Performs as well as classifier trained on true Z
- Other novel approaches e.g. (not comprehensive)
 - Inferno: <u>arxiv:1806.04743</u>
 - Direct profile-likelihood: e.g. arxiv:2203.13079

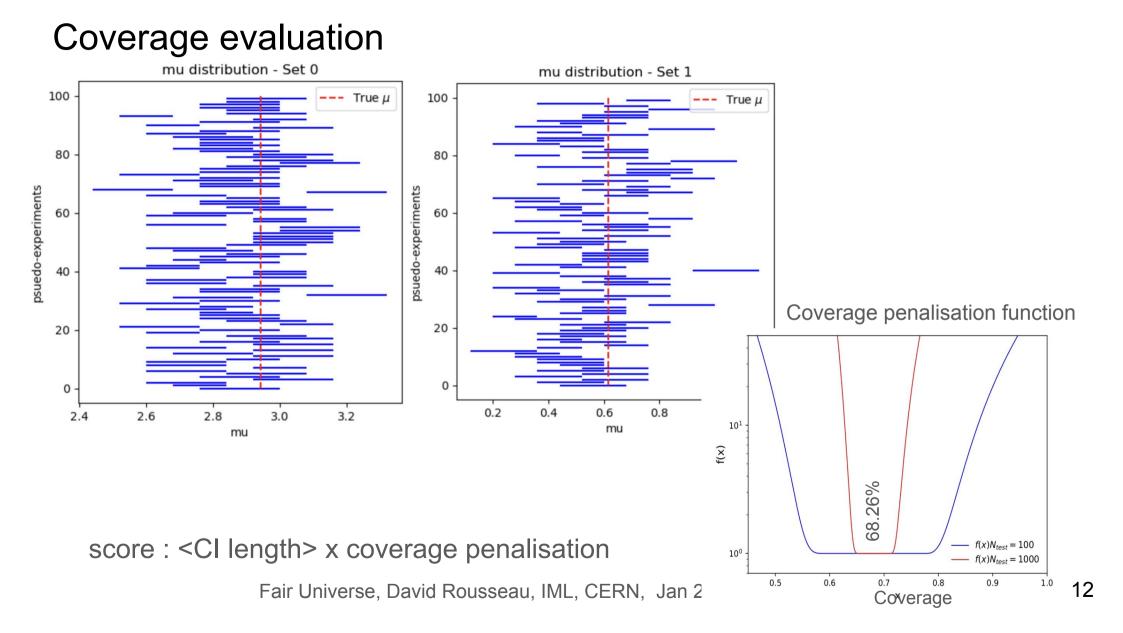


Progress requires new datasets, metrics, and platform

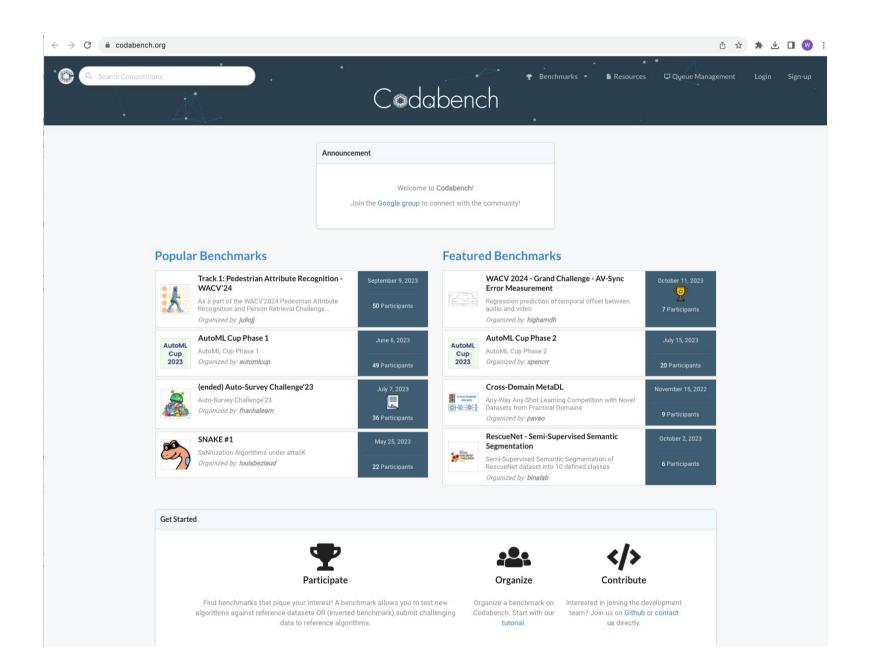
- Uncertainty-aware papers demonstrated on single systematic uncertainty, with limited data
- Original HiggsML dataset too small for ambitious approaches (systematic uncertainty small compared to statistical uncertainty)
- How to scale methods to many values of Z? (training difficulty increases, profiling approach used is expensive)
- Can faster methods allow for directly evaluating profile likelihood?
- Need for novel metrics to evaluate uncertainty determination for such methods




Organize a challenge series, progressively rolling in tasks of increasing difficulty, based on novel datasets

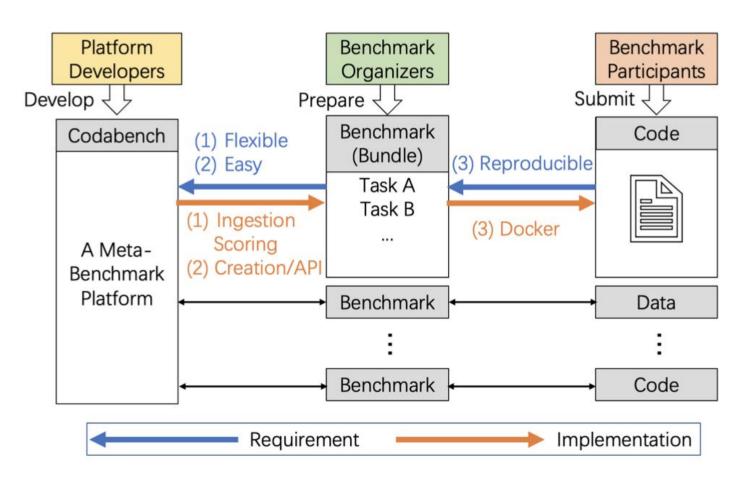

Fair Universe: HiggsML Uncertainty Challenge

- Extension of previous HiggsML challenge from 2014 (a classification problem for Higgs decaying to Tau leptons based on final state 3-momenta and derived quantities): I,h,MissingET,up to 2 jets
- Dataset : HiggsML 2014 data set on CERN Open Data portal doi:10.7483/OPENDATA.ATLAS.ZBP2.M5T8
- \Rightarrow new Fair Universe dataset, with following improvements
- Instead of ATLAS G4 simulation, use Pythia LO + Delphes
- Numbers of events $800.000 \Rightarrow >10$ millions
- Parametrised systematics (Nuisance Parameters) :
 - Tau Energy Scale : on had Tau Pt (and correlated MET)
 - Jet Energy Scale (and correlated MET impact)
 - additional randomised Soft MEt
 - background normalisation
 - W background normalisation (a subdominant poorly constrained BKG)
- Task : given a pseudo-experiment with given signal strength, provide a Confidence Interval

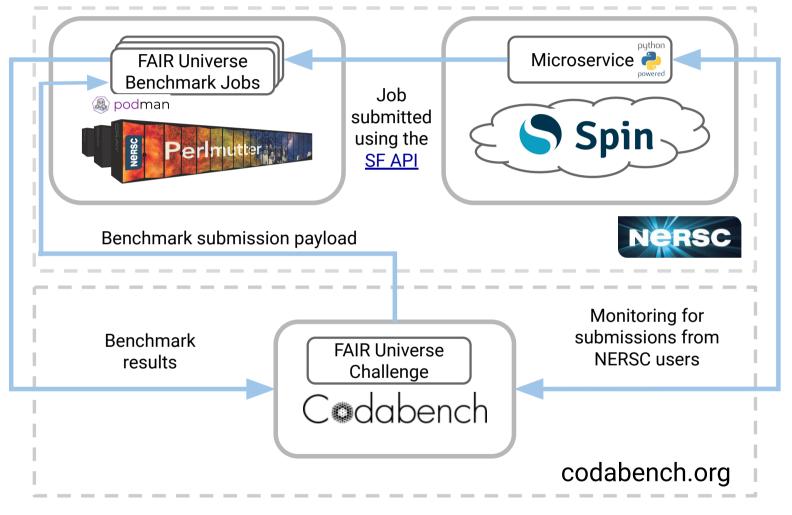


Task:				Fact Sheet Answers	Higgs Uncertainty Challenge			
#	Participant	Entries	Date of last entry	Method Name	Quantile Score	Interval	Coverage	Detailed Results
Ō	ragansu	30	2024-01-22	Histogram_10	1.45	0.226	0.57	0
2	ragansu	30	2024-01-22	One_bin NLL	1.07	0.333	0.57	٥
3	laurensslu	20	2023-12-01	cheat7	0.68	0.504	0.63	۵
4	laurensslu	20	2023-12-01	cheat7	0.61	0.544	0.68	٥
5	laurensslu	20	2023-12-01	cheat4	0.31	0.732	0.61	۵
6	laurensslu	20	2023-12-01	cheat4	0.16	0.852	0.71	۲
7	laurensslu	20	2023-12-01	Cheat2	-0.44	1.55	0.62	۵
8	laurensslu	20	2023-12-01	Cheat2	-0.74	1.375	0.55	۵
9	ragansu	30	2024-01-22	tes_finder	-0.95	1.124	0.54	٥
10	laurensslu	20	2023-12-01	Cheat2	-1.59	1.325	0.53	٥
11	Ihsan Ullah	4	2024-01-18	Sascha sys aware 8	-2.69	0.329	0.47	۲
12	Rafał Masełek	10	2023-12-01	1binNLL	-2.9	1.233	0.5	۲
13	ihsanchalearn	16	2023-12-18	1 bin NLL	-2.9	1.233	0.5	۲
14	Rafał Masełek	10	2023-12-01	1binNLL	-2.9	1.233	0.5	۲
15	ihsanchalearn	16	2023-12-18	Sascha sys aware 8	-3.01	0.33	0.46	0

sd


13

Large-compute-scale AI ecosystem ... hosting challenges and benchmarks.



Codabench/"Fair Universe" Platform

Based on https://www.codabench.org/

Fair Universe Platform: Current Codabench/NERSC integration

Conclusion

- a major new scientific competition on measuring Higgs cross-section,
 - taking into account/minimizing impact from modelisation systematics
 - winner to provide a narrow confidence interval with good coverage
- on Codabench platform with NERSC back-end for precise evaluation of submissions
- early prototype run as part of Paris Al uncertainties workshop in Nov 2023
- to run June-Sep 2024
- we're applying for being a NeurIPS 2024 competition
- Will be announced on : <u>Ihc-machinelearning-wg@cern.ch</u>
- A cosmology challenge (weak-lensing) is also in the pipeline